Optimizing Electrophoretic Deposition Parameters and Corrosion Resistance of Nano-Hydroxyapatite/Chitosan Coatings on Ti-6Al-7Nb Alloy Under Various Current Types

Document Type : Original Article

Authors

Department of Metallurgical Engineering, College of Production Engineering and Metallurgy, University of Technology, P.O. Box: 35010, Baghdad, Iraq

Abstract

Electrophoretic deposition (EPD) is a highly effective technique for modifying biomaterial surfaces, particularly in biomedical applications. This study investigates the influence of current types-direct current (DC), pulsed direct current (PDC), and alternating current (AC)-on EPD parameters, specifically applied voltage and deposition time, for nano-hydroxyapatite/chitosan (HA/CS) coatings on Ti-6Al-7Nb biomedical substrates. Surface morphology and cross-sectional thickness were characterized using optical and scanning electron microscopy, while adhesion tests assessed the bonding strength between the coating and substrate. Electrochemical polarization tests in simulated body fluid (SBF) were performed to evaluate corrosion resistance. For optimization, Taguchi’s statistical design of experiments was applied to identify the most significant factors and determine optimal deposition conditions. Results showed that a 16.5 µm-thick HA/CS coating was obtained using PDC at 70 V for 6 minutes with an 800-grit finish. Under these conditions, enhanced adhesion and uniform coating distribution were achieved. Analysis of variance (ANOVA) indicated that applied voltage (70.30 %) and deposition time (80.10 %) were the dominant factors influencing coating thickness and adhesion. Electrochemical evaluation confirmed improved corrosion resistance, with the corrosion rate reduced from 9.662×10-3 mm/year for the uncoated alloy to 2.23×10-3 mm/year for the coated alloy. Overall, PDC at optimized conditions produced a well-adhered, uniformly distributed HA/CS coating with superior corrosion protection, highlighting the potential of EPD for biomedical implant surface modification.

Keywords

Main Subjects


  1. Eraković S, Janković A, Veljović D, Palcevskis E, Mitrić M, Stevanović T, et al. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyl-apatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. J Phy Chem B. 2013; 117(6):1633-43. https://doi/10.1021/jp 305252a.
  2. Hameed HA, Hasan HA, Luddin N, Husein A, Ariffin A, Alam MK. Osteoblastic cell responses of copper nanoparticle coatings on Ti‐6Al‐7Nb alloy using electrophoretic deposition method. Feitosa V, editor. Biomed Res Int. 2022 Jan 19; 2022(1):1. https://doi/ 10.1155/2022/3675703.
  3. Pawłowski Ł, Bartmański M, Strugała G, Mielewczyk-Gryń A, Jażdżewska M, Zieliński A. Electrophoretic deposition and characterization of chitosan/eudragit E 100 coatings on titanium substrate. Coatings. 2020; 10(7):607. https://doi/10.3390/coatings10070607.
  4. Moskalewicz T, Seuss S, Boccaccini AR. Micros-tructure and properties of composite polyether-etherketone/ Bioglass® coatings deposited on Ti-6Al-7Nb alloy for medical applications. Appl Surf Sci. 2013; 273: 62-7. http://dx.doi.org/10.1016/j.apsusc. 2013.01.174.
  5. Hussein M, Mustafa A, Abdulkareem M. Using taguchi design to compare the corrosion behavior of commercial pure Ti alloys coated by dip and electrophoretic deposition with YSZ. Eng Technol J. 2023; 41(12):1588-603. https://doi/10.56294/sctconf 2024847.
  6. Moskalewicz T, Kot M, Seuss S, Kędzierska A, Czyrska-Filemonowicz A, Boccaccini AR. Electro-phoretic deposition and characterization of HA/ chitosan nanocomposite coatings on Ti6Al7Nb alloy. Metal Mater Internat. 2015; 21(1):96-103. https://doi/ 10.1007/s12540-015-1011-y.
  7. Hezil N, Aissani L, Fellah M, Abdul Samad M, Obrosov A, Timofei C, et al. Structural, and tribological properties of nanostructured α + β type titanium alloys for total hip. J Mater Res Technol. 2022; 19:3568-78. https://doi/10.1016/j.jmrt.2022. 06. 042.
  8. Cristiano C. Gomes, Leonardo M. Moreira, Vanessa J.S.V. Santos, Alfeu S. Ramos, Juliana P. Lyon CPS and FVS. Assessment of the genetic risks of a metallic alloy used in medical implants. Genet Mol Biol. 2011; 34(1):116-21. https://doi/10.1590/S1415-4757201000 5000118.
  9. Baltatu MS, Sandu AV, Nabialek M, Vizureanu P, Ciobanu G. Biomimetic deposition of hydroxyapatite layer on titanium alloys. Micromachines. 2021; 12(12):1-12. https://doi/10.3390/mi12121447.
  10. Hanawa T. Metal ion release from metal implants. Mater Sci Eng C. 2004; 24(6-8):745-52. https://doi/ 10.1016/j.msec.2004.08.018.
  11. Chlebus E, Kuźnicka B, Kurzynowski T, Dybała B. Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting. Mater Charact. 2011; 62(5):488–95. https://doi/10.1016/j. matchar.2011.03.006.
  12. Aydın İ, Bahçepınar Aİ, Kırman M, Çipiloğlu MA. Coating on Ti6Al7Nb alloy using an electrophoretic deposition method and surface properties examination of the resulting coatings. Coatings. 2019; 9(6):402. https://doi/10.3390/coatings9060402.
  13. Liu X, Poon RWY, Kwok SCH, Chu PK, Ding C. Plasma surface modification of titanium for hard tissue replacements. Surf Coat Technol. 2004; 186(1-2):227-33. https://doi/10.1016/j.surfcoat.2004.02.045.
  14. Mistry S, Kundu D, Datta S, Basu D. Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone. Aust Dent J. 2011; 56(1):68-75. https://doi/10.1111/j.1834-7819.2010.01305.
  15. Hsu HC, Wu SC, Lin CY, Ho WF. Characterization of hydroxyapatite/chitosan composite coating obtained from crab shells on low-modulus Ti–25Nb–8Sn alloy through hydrothermal treatment. Coatings. 2023; 13(2). https://doi/10.1007/s42242-021-00170-3
  16. Khalid S. Almulhim , Mariam Raza Syed , Norah Alqahtani , Marwah Alamoudi MK, Khan SZA. Bioactive inorganic materials for dental applications: a narrative review. Materials; 2022; 15(19): 6864. https://doi.org/10.3390/ma15196864.
  17. Kadhim I, Abdul Ameer Z, Alzubaidi A. Synthesis and characterization of chitosan- polyvinyl alcohol blend modified by genipin and nanohydroxyapatite for bone tissue engineering. Eng Technol J. 2019; 37(11A):470-4. https://doi/10.30684/etj.37.11a.4.
  18. Mohan L, Durgalakshmi D, Geetha M, Sankara Narayanan TSN, Asokamani R. Electrophoretic depo-sition of nanocomposite (HAp+TiO2) on titanium alloy for biomedical applications. Ceram Int. 2012;38 (4):3435-43.http://dx.doi.org/10.1016/j.ceramint.2011. 12.056.
  19. AL-Shahrabalee S, Jaber H. The impacts of calcium ions substitution in hydroxyapatite with neodymium and zinc on biological properties and osteosarcoma cells. Eng Technol J. 2022; 40(12):1-9. https://doi/ 10.30684/etj.2022.133915.1217.
  20. Ahmed I, Jaber H, Salih S. Electrophoretic deposition used to prepare and analyze the microstructure of chitosan/hydroxyapatite nano-composites. Eng Technol J. 2021; 39(11):1693-704. 
  21. Moskalewicz T, Kot M, Seuss S, Kędzierska A, Czyrska-Filemonowicz A, Boccaccini AR. Electro-phoretic deposition and characterization of HA/ chitosan nanocomposite coatings on Ti6Al7Nb alloy. Metal Mater Internat. 2015;21(1):96-103. https://doi/ 10.1007/s12540-015-1011-y.
  22. Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD).2007; 52:1-61. https://doi/10.1016/j. pmatsci. 2006.07.001
  23. Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7(5):581. https://doi/10.1098/rsif.2010. 0156.focus.
  24. Gaafar MS, Yakout SM, Barakat YF, Sharmoukh W. Electrophoretic deposition of hydroxyapatite/chitosan nanocomposites: the effect of dispersing agents on the coating properties. RSC Adv. 2022; 12(42):27564-81. http://dx.doi.org/10.1039/D2RA03622C.
  25. Stevanović M, Djošić M, Janković A, Kojić V, Stojanović J, Grujić S, et al. The chitosan-based bioactive composite coating on titanium. J Mater Res Technol. 2021;15:4461-74. https://doi/10.1016/j.jmrt. 2021.10.072.
  26. Pishbin F, Simchi A, Ryan MP, Boccaccini AR. Electrophoretic deposition of chitosan/45S5 Bio-glass®composite coatings for orthopaedic appli-cations. Surf Coat Technol. 2011; 205(23-24):5260-8. http://dx.doi.org/10.1016/j.surfcoat.2011.05.026.
  27. Pang X, Zhitomirsky I. Electrodeposition of composite hydroxyapatite-chitosan films. Mater Chem Phys. 2005;94(2-3):245-51. http://doi/10.1016/j.mat chemphys. 2005.04.040.
  28. Kadhim MJ, Abdulateef NE, Abdulkareem MH. Evaluation of surface roughness of 316L stainless steel substrate on nanohydroxyapatite by electro-phoretic deposition. Al-Nahrain J Eng Sci. 2018; 21(1):28. https://doi.org/10.29194/NJES21010028. 
  29. Vafa E, Bazargan-Lari R, Bahrololoom ME. Electrophoretic deposition of polyvinyl alcohol/ natural chitosan/bioactive glass composite coatings on 316L stainless steel for biomedical application. Prog Org Coat. 2021;151:106059. https://doi/10.1016/j. porgcoat.2020.106059.
  30. Zhang XL, Jiang ZhH, Yao ZhP, Song Y, Wu ZhD. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros Sci. 2009; 51(3):581-7. https://doi/10.1016/j.corsci.2008.12.005.
  31. Stępień M, Handzlik P, Fitzner K. Electrochemical synthesis of oxide nanotubes on Ti6Al7Nb alloy and their interaction with the simulated body fluid. J Solid State Electrochem. 2016;20(10):2651-61. http://doi/ 10.1007/s10008-016-3258-8.
  32. Ajee S, Alzubaydi T, Swadi A. Influence of heat treatment conditions on microstructure of Ti-6Al-7Nb alloy as used surgical implant materials. Eng Technol J. 2007; 25(3):431-42. http://doi/10.30684/etj.25.3.15.
  33. Moskalewicz T, Warcaba M, Łukaszczyk A, Kot M, Kopia A, Hadzhieva Z, et al. Electrophoretic deposi-tion, microstructure and properties of multicomponent sodium alginate-based coatings incorporated with graphite oxide and hydroxyapatite on titanium biomaterial substrates. Appl Surf Sci. 2022; 575: 151688. https://doi/10.1016/j.apsusc. 2021.151688.
  34. Meng X, Kwon TY, Kim KH. Hydroxyapatite coating by electrophoretic deposition at dynamic voltage. Dent Mater J. 2008; 27(5):666-71. https://doi/10.4012/dmj.27.666. 
  35. Shahabi S, Najafi F, Majdabadi A, Hooshmand T, Haghbin Nazarpak M, Karimi B, et al. Effect of gamma irradiation on structural and biological properties of a PLGA-PEG-hydroxyapatite composite. Sci World J. 2014; 2014. http://dx.doi.org/10.1155/ 2014/420616.
  36. Kwok CT, Wong PK, Cheng FT, Man HC. Characterization and corrosion behavior of hydroxyl-apatite coatings on Ti6Al4V fabricated by electro-phoretic deposition. Appl Surf Sci. 2009; 255(13-14):6736-44. https://doi/10.1002/jbm.b.35342.
  37. Mareci D, Ungareanu G, Aelenei DM, Mirza Rosca JC. Electrochemical characteristics of titanium based biomaterials in artificial saliva. Mater Corr. 2007; 58(11):848-56. https://doi/ 10.1002/maco.200704065.
  38. Chen Q, Thouas GA. Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 2015; 87:1-57. http//dx.doi.org/10.1016/j.mser.2014.10.001
  39. Surmeneva MA, Sharonova AA, Chernousova S, Prymak O, Loza K, Tkachev MS, et al. Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating. Colloids Surf B Biointerfaces. 2017;156:104-13. http://dx.doi.org/10.1016/j.colsurfb. 2017.05.016.
  40. Demczuk A, Swieczko-Zurek B, Ossowska A. Corrosion resistance examinations of Ti6Al4V alloy with the use of potentiodynamic method in Ringer’s and artificial saliva solutions. Adv Mater Sci. 2012; 11(4). https://doi/10.2478/v10077-011-0021-9.