Comparative Study of Surfactants in Graphene Conductive Inks: From Dispersion Mechanisms to Electrical Properties

Document Type : Original Article

Authors

1 Department of Printing Science and Technology, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

2 Department of Color Physics, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

Abstract

The development of environmentally friendly, water-based conductive inks with exceptional dispersion stability and electrical conductivity is crucial for advancing next-generation printed electronics. This study systematically investigates the effects of surfactant type (SDBS, SDS, CTAB, and Triton X-100) and concentration on the dispersion stability and conductivity of graphene-based conductive inks. After scrutinizing the effect of surfactant type, the influence of its concentration has been investigated by sweeping the surfactants concentration in the range of 0.1 to 0.75 % (w/w). Moreover, the effects of surfactant concentration and various milling process (Ultrasonication, Jar Milling, and Magnetic Stirring) on conductivity are studied. UV-Vis. spectrophotometry, turbidimetry, particle size analysis, SEM, Confocal Raman analysis and four probe conductivity- meter are used for evaluation of dispersion stability and conductivity. Results revealed that anionic surfactants, particularly SDBS, outperformed cationic and nonionic surfactants due to enhanced electrostatic repulsion and π-π interactions with graphene. It was revealed that the optimal properties are obtainable by SDBS with 0.1 % (w/w), far below its critical micelle concentration which minimized micelle formation and improved conductivity. Magnetic stirring emerged as the most effective dispersion method, minimizing structural defects and achieving the lowest electrical resistivity (24-32 mΩ). The optimized formulation (0.1 % SDBS with magnetic stirring) resulted in a 15 % reduction in electrical resistivity compared to the standard formulation. The findings provide a rational framework for surfactant selection and ink formulation, paving the way for high-performance conductive inks in flexible electronics and other applications.

Keywords

Main Subjects


  1. Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. small. 2014;10(17):3515-35. https://doi.org/10.1002/ smll.201303000.
  2. Khan S, Lorenzelli L, Dahiya RS. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens J. 2015; 15(6):3164-85. https://doi.org/10.1109/JSEN. 2014.2375203.
  3. Tran TS, Dutta NK, Choudhury NR. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing tech-niques and applications. Adv Colloid Interface Sci. 2018; 261:41-61. https://doi.org/10.1016/j. cis.2018.09.003.
  4. Määttänen A, Ihalainen P, Pulkkinen P, Wang S, Tenhu H, Peltonen J. Inkjet-printed gold electrodes on paper: characterization and functionalization. ACS Appl Mater Interfac. 2012; 4(2):955-64. https://doi.org/10.1021/am 201609w.
  5. Magdassi S, World S. The chemistry of inkjet inks 2010. Available from: http://www. worldscientific.com/worldscibooks/10.1142/6869#t=toc.
  6. Hajalifard Z, Mousazadeh M, Khademi S, Khademi N, Jamadi MH, Sillanpää M. The efficacious of AOP-based processes in concert with electrocoagulation in abatement of CECs from water/wastewater. npj Clean Water. 2023; 6(1):30. https://doi.org/10.1038/s41545-023-00 239-9.
  7. Jalili M, Naeini MMR, Ajili N. Optimizing dispersion in sublimation inkjet inks: unveiling the role of sodium naphthalene sulfonate formaldehyde condensate as a co-dispersant. J Coat Technol Res. 2025;22(4):1557-72. https://doi.org/10.1007/s11998-024-01060-w.
  8. Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater. 2016; 28(28):5986-96. https://doi.org/10.1002/adma.201600772.
  9. Wang H, Qiao X, Chen J, Ding S. Preparation of silver nanoparticles by chemical reduction method. Colloids Surf Physicochem Eng Aspects. 2005;256(2):111-5. https://doi.org/10. 1016/j.colsurfa.2004.12.058.
  10. Sirringhaus H, Shimoda T. Inkjet printing of functional materials. MRS Bull. 2003; 28(11):802-6. https://doi.org/10.1557/mrs 2003. 228.
  11. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its appli-cations. Adv Mater. 2010; 22(6):673-85. https://doi.org/ 10.1002/adma.200901141.
  12. Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Grácio JJA, et al. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano. 2011; 5(6):4987-96. https://doi.org/10.1021/nn201092p.
  13. Dai G. Synthesis of carbon nanotubes by catalytic chemical vapor deposition. In: Saleh HM, El-Sheikh SMM, editors. Perspective of Carbon Nanotubes. Rijeka: IntechOpen; 2019.
  14. Tadros TF. Adsorption of Surfactants and Polymeric Surfactants at the Solid/Liquid Interface.  Applied Surfactants. 2005. p. 85-113.
  15. Nayini MMR, Ranjbar Z. Carbon Nanotubes: Dispersion Challenge and How to Overcome It. In: Abraham J, Thomas S, Kalarikkal N, editors. Handbook of Carbon Nanotubes. Cham: Springer International Publishing; 2022. p. 341-92.
  16.                 Španková M, Vávra I, Chromik Š, Gaži Š, Štrbı́k V, Kúš P, et al. Improvement of the superconducting properties of YBCO thin films upon annealing of CeO2/Al2O3 substrate. Thin Solid Films. 2002; 416(1):254-9. https://doi. org/10.1016/S0040-6090(02)00629-6.
  17. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Amer Chem Soc. 2009; 131(10):3611-20. https://doi. org/10.1021/ja807449u.
  18. Nazari B, Ranjbar Z, Moghaddam AR, Momen G, Ranjbar B. Dispersing graphene in aqueous media: Investigating the effect of different surfactants. Colloids Surf Physicochem Eng Aspects. 2019; 582:123870. https://doi.org/10. 1016/j.colsurfa.2019.123870.
  19. Mousazadeh M, Khademi N, Kabdaşlı I, Rezaei S, Hajalifard Z, Moosakhani Z, et al. Domestic greywater treatment using electrocoagulation-electrooxidation process: optimisation and experimental approaches. Sci Rep. 2023;13 
    (1): 15852. https://doi.org/10.1038/s41598-023-42831-6.
  20. Zhang Q, Liu L, Pan C, Li D. Review of recent achievements in self-healing conductive materials and their applications. J Mater Sci. 2018; 53(1):27-46. https://doi.org/10.1007/ s10853 - 017-1388-8.
  21. Zhang X, Coleman AC, Katsonis N, Browne WR, van Wees BJ, Feringa BL. Dispersion of graphene in ethanol using a simple solvent exchange method. Chem Commun. 2010; 46 (40):7539-41. https://doi.org/10.1039/C0CC 026 88C.
  22. Hsiao A-E, Tsai S-Y, Hsu M-W, Chang S-J. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites. Nanoscale Research Letters. 2012; 7(1):240. https://doi. org/10.1186/1556-276X-7-240.
  23. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites-A review. Prog Polym Sci. 2013;38(8):1232-61. https://doi. org/10. 1016/j.progpolymsci.2013.02.003.
  24. Chaban VV, Fileti EE. Graphene exfoliation in ionic liquids: unified methodology. RSC Adv. 2015; 5(99):81229-34. https://doi.org/10.1039/ C5RA16857K.
  25. Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci. 2006; 128-130:37-46. https://doi.org/10.1016/j.cis.2006.11.007.
  26. Hashemi R, Weng GJ. A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon. 2016; 96:474-90. https://doi. org/10. 1016/j.carbon.2015.09.103.
  27. Lalire T, Longuet C, Taguet A. Electrical properties of graphene/multiphase polymer nanocomposites: A review. Carbon. 2024; 225: 119055. https://doi.org/10.1016/j.carbon.2024.119055.
  28. Wamsley M, Zou S, Zhang D. Advancing Evidence-Based Data Interpretation in UV–Vis and Fluorescence Analysis for Nanomaterials: An Analytical Chemistry Perspective. Anal Chem. 2023; 95(48):17426-37. https://doi.org/ 10.1021/acs.analchem.3c03490.
  29. Dastyar P, Salehi MS, Firoozabadi B, Afshin H. Influences of polymer–surfactant interaction on the drop formation process: an experimental study. Langmuir. 2021;37(3):1025-36. https:// doi.org/10.1021/acs.langmuir.0c02487.
  30. Jalili M, Mohammad Raei Naeini M, Bastani S, Ajili N. Optimizing the surfactant/polymeric dispersant combination in pigment-based aqueous inkjet inks. Prog Color Color Coat. 2025; 18(2):177-88. https://doi.org/10.30509/ pccc. 2024.167361.1316.
  31. Wentzel D, Miller S, Sevostianov I. Dependence of the electrical conductivity of graphene reinforced epoxy resin on the stress level. Inter J Eng Sci. 2017; 120:63-70. https://doi.org/10.1016/j.ijengsci.2017.06.013.