Corrosion Inhibition of Mild Steel in 1 M HCl Using 5-(3-Methylphenyl)-4-((4-Nitrobenzylidene)amino)-4H-1,2,4-Triazole-3-Thiol: Experimental and Theoretical Insights

Document Type : Original Article

Authors

1 Technical Engineering College, Middle Technical University, P.O. Box: 10001, Baghdad, Iraq

2 Al-Karkh University of Science, Baghdad P.O. Box: 10001, Baghdad, Iraq

3 Oil and Gas Engineering Department, University of Technology, P.O. Box: 10001, Baghdad, Iraq

4 Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, P.O. Box: 64004, Thi Qar, Iraq

Abstract

This study investigates the corrosion inhibition performance of 5-(3-methylphenyl)-4-((4-nitrobenzylidene)amino)-4H-1,2,4-triazole-3-thiol (MNATT) for mild steel in 1 M HCl, using both experimental weight loss techniques and Density Functional Theory (DFT) calculations. Weight loss experiments were conducted at MNATT concentrations ranging from 0.1 to 1.0 mM and immersion times between 1 and 48 hours. The highest inhibition efficiency of 88.6 % was observed at 0.5 mM after 5 hours of immersion. A temperature-dependent study conducted at 303-333 °K revealed a mild improvement in inhibition performance with rising temperature, indicating thermal stability of the adsorbed layer. Adsorption behavior followed the Langmuir isotherm, and the calculated standard free energy of adsorption (                    = –14.33 kJ·mol⁻¹) confirmed that the adsorption mechanism is physisorption. Complementary DFT analysis showed a HOMO-LUMO energy gap (ΔE = 3.532 eV) and identified electron-rich active sites, supporting the molecule’s ability to interact with the metal surface. These findings demonstrate that MNATT is a promising, low-concentration, surface-friendly corrosion inhibitor for mild steel in acidic environments.

Keywords

Main Subjects


  1. Vaszilcsin N, Ordodi V, Borza A. Corrosion inhibitors from expired drugs. Inter J Pharm. 2012; 431(1-2):241-4. https://doi.org/10.1016/j.ijpharm.2012.04. 015.
  2. Jalab R, Saad MA, Sliem MH, Abdullah AM, Hussein IA. An eco-friendly quaternary ammonium salt as a corrosion inhibitor for carbon steel in 5 M HCl solution: theoretical and experimental investigation. Molecules. 2022;27(19):6414. https:// doi.org/10. 3390/molecules27196414.  
  3. Al-Shafey HI, Hameed RA, Ali FA, Aboul-Magd AE, Salah M. Effect of expired drugs as corrosion inhibitors for carbon steel in 1M HCL solution. Int J Pharm Sci Rev Res. 2014;27(1):146-52. https://doi. org/10.15344/2394-8376/2024/146.
  4. Dehghani A, Ghahremani P, Mostafatabar AH, Ramezanzadeh B. Plant extracts: Probable alternatives for traditional inhibitors for controlling alloys corrosion against acidic media-A review. Biomass Con Bioref. 2024;14(6):7467-86. https://doi.org/10. 1007/s13399-023-03907-0.
  5. Dehghani A, Berdimurodov E, Verma C, Verma DK, Berdimuradov K, Quraishi MA, Aliev N. Constructing efficacy: A novel perspective on organic corrosion inhibitors and interfacial interactions. Chem Papers. 2024; 78(3):1367-97. https://doi.org/10.1007/s11696- 023-02586-4.
  6. Zunita M, Rahmi VA. Advancement of plant extract/ionic liquid-based green corrosion inhibitor. Chem Africa. 2024; 7(2):505-38. https://doi.org/10. 1007/s42250-023-00426-0.
  7. Akpan ED, Singh AK, Lgaz H, Quadri TW, Shukla SK, Mangla B, Dwivedi A, Dagdag O, Inyang EE, Ebenso EE. Coordination compounds as corrosion inhibitors of metals: A review. Coord Chem Rev. 2024; 499:215503. https://doi.org/10.1016/j.ccr. 2024. 215503.
  8. Mortadi K, El Amri A, Ouakki M, Hsissou R, Jebli A, Lebkiri A, Safi Z, Wazzan N, Berisha A, Cherkaoui M, Hbaiz EM. Electrochemical and theoretical studies on a bioactive Juniperus oxycedrus essential oil as a potential and ecofriendly corrosion inhibitor for mild steel in 1.0 M HCl environment. Inorg Chem Commun. 2024;112196. https://doi.org/10.1016/j. inoche.2024.112196.
  9. Lavanya M, Ghosal J, Rao P. A comprehensive review of corrosion inhibition of aluminium alloys by green inhibitors. Canadian Metallur Quart. 2024; 63(1):119-29. https://doi.org/10.1080/00084433.2024. 1132326. 
  10. Sehrawat R, Vashishth P, Bairagi H, Shukla SK, Kumar H, Ji G, Mangla B. Coordination bonding and corrosion inhibition characteristics of chalcone compounds for metals: An inclusive review based on experimental as well as theoretical perspectives. Coordin Chem Rev. 2024;514:215820. https://doi. org/10.1016/j.ccr.2024.215820. 
  11. AL Salihi HA, Mahdi RR, Al‐Amiery A, Al‐Azzawi WK, Kadhum AA. Exploring the efficacy of polysaccharides as green corrosion inhibitors: A comprehensive review. Starch‐Stärke. 2024; 2300234. https://doi.org/10.1002/star.202300234
  12. Berrissoul A, Exploitation of a new green inhibitor against mild steel corrosion in HCl: Experimental, DFT and MD simulation approach. J Mol Liq. 2022; 349: 118102.
  13. Ouakki M, Galai M, Cherkaoui M. Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. J Mol Liq. 2022: 345: 117815.
  14. Sun X, Qiang Y, Hou B, Zhu H, Tian H. Cabbage extract as an eco-friendly corrosion inhibitor for X70 steel in hydrochloric acid medium. J Mol Liq. 2022; 362: 119733.
  15. Ghaderi M, Saadatabadi A, Mahdavian M, Haddadi A. pH-sensitive polydopamine–La (III) complex decorated on carbon nanofiber toward on-demand release functioning of epoxy anti-corrosion coating. Langmuir. 2022; 38: 11707-11723.
  16. Agus K, Ridhova A, Priyotomo G, Elya B, Maksum A, Sadeli Y, utopo S, Aditiyawarman S, Riastuti R, Soedarsono J. Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution. Eastern-European J Enterprise Technol. 2021;12:110. https://doi.org/10. 15587/1729-4061.2021.224435
  17. Emmanuel JK. Corrosion protection of mild steel in corrosive media, a shift from synthetic to natural corrosion inhibitors: a review. Bulletin Nation Res Cent. 2024; 48(1):26. https://doi.org/10.1186/s42269- 023-00219-3.
  18. ASTM International, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test, 2011, 1-9.
  19. NACE International, Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solutions at Temperatures below 93 °C (200 °F), TM0193-2016- SG, 2000
  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision B.05, Gaussian, Inc., Wallingford CT, 2004.
  21. Zhao Y, Teng X, Xu Z. The scale inhibition mechanism of sodium humate on heat transfer surface: Insights from electrochemical experiments, quantum chemical calculations, and molecular dynamics simulation. Inter J Heat Mass Transfer. 2024;220: 124966. https://doi.org/10.1016/j.ijheatmasstransfer. 2023.124966.
  22. Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica. 1934; 1(1-6):104-13. https://doi.org/10.1016/S0031-8914(34)90011-2.
  23. Namdar-Asl H, Fakheri F, Pour-Ali S, Tavangar R, Hejazi S. Synthesis and corrosion inhibition study of 1-aminobenzotriazole for mild steel in HCl solution: electrochemical, surface analysis, and theoretical investigations. Prog Color Colorant Coat. 2024; 17(1): 61-74. https://doi.org/10.30502/PCCC.2023.359903. 1015.
  24. Touir R, Errahmany N, Rbaa M, Benhiba F, Doubi M, Kafssaoui EE, Lakhrissi B. Experimental and computational chemistry investigation of the molecular structures of new synthetic quinazolinone derivatives as acid corrosion inhibitors for mild steel. J Mol Struct. 2024; 1303:137499. https://doi.org/10. 1016/ j.molstruc.2023.137499.
  25. Coy-Barrera CA, Quiroga D. In silico evaluation for the design of coumarin-type compounds based on phenol and naphthol rings as a coating in carbon steel corrosion processes: DFT B3LYP calculations, synthesis and electrochemical characterization. Prog Org Coat. 2024; 188:108266. https://doi.org/10.1016/ j. porgcoat.2023.108266.
  26. Sheit HM, Mohan KS, Gunavathy KV, Mohamed MV, Subhapriya P, Samsathbegum A, Sindhuja GH. Investigation on the corrosion inhibition efficiency of 2,4-diphenyl-3-aza bicyclo [3.3.1] nonan-9-one in carbon steel immersed in acidic media. Chem Phys Impact. 2024; 8:100521. https://doi.org/10.1016/j. chphi. 2023.100521. 
  27. Anadebe VC, Chukwuike VI, Nayak KC, Ebenso EE, Barik RC. Combined electrochemical, atomic scaleDFT and MD simulation of Nickel based metal organic framework (Ni-MOF) as corrosion inhibitor for X65 pipeline steel in CO2-saturated brine. Mater Chem Phys. 2024; 312:128606. https://doi.org/10. 1016/j.matchemphys.2023.128606. 
  28. Laarioui A, Chaouki I, Hmada A, El Magri A, Errahmany N, El Hajri F, Dkhireche N, Bakkali S, Touir R, Boukhris S. Corrosion inhibition effect of the synthetized chromen-6-one derivatives on mild 
    steel in 1.0 M HCl electrolyte: electrochemical, spectroscopic and theoretical studies. Mor J Chem. 2024; 12(2):570-93. https://doi.org/10.48317/IMIST. PRSM/morjchem-v12i2.40860. 
  29. Pai GD, Rathod MR, Rajappa SK, Kittur AA. Effect of tabebuia heterophylla plant leaves extract on corrosion protection of low carbon steel in 1M HCl medium: Electrochemical, quantum chemical and surface characterization studies. Results Surf Inter. 2024; 15:100203. https://doi.org/10.1016/j.rsurfin. 2023. 100203. 
  30. Dahmani K, Galai M, Rbaa M, Ech-Chebab A, Errahmany N, Guo L, AlObaid AA, Hmada A, Warad I, Touhami ME, Cherkaoui M. Evaluating the efficacy of synthesized quinoline derivatives as corrosion inhibitors for mild steel in acidic environments: An analysis using electrochemical, computational, and surface techniques. J Mol Struct. 2024; 1295:136514. https://doi.org/10.1016/j.molstruc.2023.136514. 
  31. Akrom M, Rustad S, Dipojono HK. A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors. Phys Scripta. 2024; 99(3):036006. https://doi.org/10.1088/1402-4896/ace0d2. 
  32. Fernandes CM, Coutinho MS, Leite MC, Martins V, Batista MP, Faro LV, Al-Rashdi AA, Silva JC, Batalha PN, Lgaz H, Ponzio EA. Green-synthetized βamino-α-carbethoxy ethyl acrylates as corrosion inhibitors for mild steel in acid media: Experimental performance evaluation and atomic/molecular-level modeling. Inorg Chem Commun. 2024; 159:111722. https://doi.org/10.1016/j.inoche.2023.111722. 
  33. Essien KE, Okon EJ, Archibong IN, Okon OE, George IE. Experimental, Quantum chemical and IR spectroscopy studies on the corrosion inhibition of mild steel by 3,5-dimethyl-4-nitroisoxazole in HCl solutions. J Mater Environ Sci. 2024; 15(1):136. https://doi.org/10.26872/jmes.2021.12.6.40.
  34. Quy Huong D, Duong T, Nam PC. Effect of the structure and temperature on corrosion inhibition of thiourea derivatives in 1.0 M HCl solution. ACS omega. 2019 Aug 26;4(11):14478-89. https://doi.org/ 10.1021/acsomega.9b01599
  35. Dehghani A, Berdimurodov E, Verma C, Verma DK, Berdimuradov K, Quraishi MA, Aliev N. Constructing efficacy: A novel perspective on organic corrosion inhibitors and interfacial interactions. Chem Papers. 2024; 78(3):1367-97. https://doi.org/10.1007/s11696- 023-02523-0.
  36. Wang Q, Zhou X, Zhao C, Wang R, Sun Y, Yan Z, Li X. Corrosion inhibition behavior and theoretical study on carbon steel in H2SO4 by Schizochytrium extract. Chem Papers. 2024; 78(2):909-26. https://doi.org/ 10.1007/s11696-023-02524-z.
  37. Mamand DM, Kak Anwer TM, Qadr HM. Corrosion inhibition performance of organic compounds and theoretical calculations based on density functional theory (DFT). Corr Rev. 2024; 42(1):1-5. https://doi. org/ 10.1515/corrrev-2023-0015.
  38. Crisan M, Muntean C, Chumakov Y, Plesu N. Investigating the corrosion inhibition mechanisms of alkanolammonium salts: a case study with ethylethanolammonium 4-nitrobenzoate on carbon steel in saline solution. Appl Sci. 2024; 14(5):1832. https://doi.org/ 10.3390/app14051832.
  39. Pourmohseni M, Rashidi A, Karimkhani M. Preparation of corrosion inhibitor from natural plant for mild steel immersed in an acidic environment: experimental and theoretical study. Sci Reports. 2024;14(1):7937. https://doi.org/10.1038/s41598-023- 34440-3.
  40. Al-Amiery A, Shaker LM, Kadhum AA, Takriff MS. Synthesis, characterization and gravimetric studies of novel triazole-based compound. Inter J Low-Carbon Technol. 2020; 15(2):164-70. https://doi.org/10.1093/ ijlct/ctz067.
  41. Nahlé A, Salim R, El Hajjaji F, Aouad MR, Messali M, Ech-Chihbi E, Hammouti B, Taleb M. Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: experimental & theoretical approach. RSC advances. 2021;11(7): 4147-62. https://doi.org/10.1039/D0RA09679B.
  42. . Elabbasy HM, Toghan A, Gadow HS. Cysteine as an eco-friendly anticorrosion inhibitor for mild steel in various acidic solutions: electrochemical, adsorption, surface analysis, and quantum chemical calculations. ACS Omega. 2024; 9(11):13391-411. https://doi.org/ 10.1021/acsomega.3c06066.
  43. Toghan A, Farag AA, Alduaij OK, Elabbasy HM, Dardeer HM, Masoud EM, Fawzy A, Gadow HS. Electrochemical, gravimetric, quantum chemical and computational investigations on an effective synthetic chlorinated cyclic imide derivative as a corrosion inhibitor for carbon steel in sulfuric acid solution. J Mol Struct. 2024; 1307:138040. https://doi.org/10. 1016/ j.molstruc.2023.138040.
  44. Verma C, Dubey S, Bose R, Alfantazi A, Ebenso EE, Rhee KY. Zwitterions and betaines as highly soluble materials for sustainable corrosion protection: Interfacial chemistry and bonding with metal surfaces. Adv Coll Interf Sci. 2024:103091. https://doi.org/10. 1016/j.cis.2023.103091.
  45. Verma C, Al-Moubaraki AH, Alfantazi A, Rhee KY. Heterocyclic amino acids-based green and sustainable corrosion inhibitors: Adsorption, bonding and corrosion control. J Clean Prod. 2024:141186. https://doi.org/10.1016/j.jclepro.2023.141186.
  46. Liu Y, Shi J. Recent progress and challenges of using smart corrosion inhibitors in reinforced concrete structures. Const Building Mater. 2024; 411:134595. https://doi.org/10.1016/j.conbuildmat.2023.134595.
  47. Song S, Yan H, Cai M, Huang Y, Fan X, Zhu M. Constructing mechanochemical durable super-hydrophobic composite coating towards superior anticorrosion. Adv Mater Technol. 2022; 7(6): 2101223. https://doi.org/10.1002/admt.202101223.
  48. Pistone A, Scolaro C, Visco A. Mechanical properties of protective coatings against marine fouling: A review. Polymers. 2021;13(2):173. https://doi.org/10. 3390/polym13020173.
  49. Jamali SS, Wu Y, Homborg AM, Lemay SG, Gooding JJ. Interpretation of stochastic electro-chemical data. Current Opinion Electrochem. 2024; 46:101505. https://doi.org/10.1016/j.coelec. 2023. 101505.
  50. Shetty S, Rao P, Kedimar N, Rao SA. Electrochemical and quantum chemical investigation to evaluate corrosion inhibition performance of therapeutic drug. Canadian Metal Quarterly. 2024;63(2):468-82. https://doi.org/10.1007/s42641-023- 00280- 8.