Table S1: Parameters Derived from HOMO and LUMO Calculations

Parameter	Value	Significance
	(eV)	· ·
HOMO	-8.084	Indicate abilities of inhibitor molecules to donate
		electrons. A higher HOMO energy level enhances the
		capability of transferring electron to the metal, facilitating
		adsorption.
LUMO	-4.552	Reflects the tendency of molecule for accepting electron.
		A lower LUMO energy level promotes more effective
		back-donation from the metal, stabilizing the adsorption
		process.
HOMO-LUMO Gap	3.532	A smaller HOMO-LUMO gap signifies increased
(ΔE)		molecular reactivity, leading to stronger interactions and
		improved adsorption on the metal surface.
HOMO-1	-9.311	Indicates additional electron-donating centers that may
		contribute to adsorption.
LUMO+1	-1.205	Suggests the next available unoccupied orbital, which
		influences molecular stability.
Electronegativity (χ)	6.318	Indicates capability of inhibitor to draw electron from the
		metal.
Hardness (η)	1.766	A lower value indicates better inhibition efficiency due to
		increased reactivity.
Softness ($\sigma = 1/\eta$)	0.566	Higher softness suggests better adsorption and interaction
		with the metal surface.
Ionization Potential (I	8.084	Reflects required energy to detach electrons from
= -HOMO)		molecules, signifying its stability.
Electron Affinity (A =	4.552	Demonstrates abilities of inhibitor for receiving electron
-LUMO)		from the metal.
Fraction of Electron	0.556	Represents transferring electron from the inhibitor to metal,
Transfer (ΔN)		positive values validate its adsorption potential.

Figure S1. The optimized structure, HOMO, HOMO-1, LUMO+1 and LUMO for MNATT

Figure S2: Molecular Orbital Energy Levels of MNATT Derived from DFT Calculations