Harnessing Herbaceous Plants as an Eco-Friendly Source of Carbon-Based Adsorbents for Water Remediation: A Review

Document Type : Original Article

Authors

1 Department of Chemical Engineering, College of Engineering, University of Baghdad, P.O. Box: 10071, Baghdad, Iraq.

2 Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of Science, P.O. Box: 10081, Baghdad, Iraq

3 College of Technical Engineering, Al-Farahidi University, P.O. Box: 10070, Baghdad, Iraq

4 Department of Chemical Engineering, College of Engineering, Tikrit University, P.O. Box: 34001, Saladin, Iraq

Abstract

The water deficit by 2050 is anticipated to increase from 85 to 283 km³ annually, which puts the world in a real threat if no practical solutions are introduced. This research explores the diverse adsorption potential of herbaceous plants, particularly Rosaceae, Paeoniaceae, Malvaceae, and Asteraceae, to improve eco-friendly and efficient water remediation technologies. The study catalogs 22 herbaceous plants using Scopus data and focuses on pollutant adsorption. Rose waste (especially ultimate rose pulp) and rose flower biomass may remove wastewater pollutants. Novel biomass treatments like coating, pyrolyzing, soaking in activating solutions, and synergizing with additives increase pollutant water adsorption. Spent Alchemilla vulgaris leaves absorb methylene blue dye well. Paeoniaceae, represented by Paeonia ostii seed coats, showed novel heavy metal adsorbents with excellent capacities and reusability. Hibiscus species of Malvaceae show phytoremediation potential, removing dyes and adsorbing Safranin dye with activated carbon from Hibiscus cannabinus. In the Asteraceae family, sunflower-based adsorbents for water treatment were studied for various pollutants using biochar modification, chemical treatment, and nanoparticle incorporation. The exceptional adsorption properties of biochar, the cost-effective production of activated carbon, the versatility of sunflower straw-activated carbon, and the use of nanoparticles-coated sunflower husk were found for simultaneous antibiotics adsorption and dye removal. Marigold and Chamomile, Asteraceae plants, are versatile environmental adsorbents. This comprehensive research uses herbal-based adsorbents due to their efficacy, economic viability, and environmental sustainability.

Keywords

Main Subjects


  1. Ahmed AU, Ibraheem H, Kadhom M, Rashad AA, Al-Dahhan WH, Bufaroosha M. et al. Modified PVC as adsorbent for methyl orange dye removable. 2022; 020006. https://doi.org/10.1063/5.0093582.
  2. Ismail Z, Go YI. Fog-to-water for water scarcity in climate-change hazards hotspots: pilot study in southeast asia. Global Challeng. 2021;5(5): 2000036. https://doi.org/10.1002/gch2.202000036.
  3. Droogers P, Immerzeel WW, Terink W, Hoogeveen J, Bierkens MFP, van Beek LPH, et al. Water resources trends in Middle East and North Africa towards 2050. Hydrol Earth Syst Sci. 2012; 16:3101–14. https://doi.org/10.5194/hess-16-3101-2012.
  4. Salih SS, Mohammed HN, Abdullah GH, Kadhom M, Ghosh TK. Simultaneous removal of Cu(II), Cd(II), and industrial dye onto a composite chitosan biosorbent. J Polym Environ. 2020; 28:354-65. https://doi.org/ 10.1007/s10924-019-01612-x.
  5. Salih SS, Mahdi A, Kadhom M, Ghosh TK. Competitive adsorption of As(III) and As(V) onto chitosan/diatomaceous earth adsorbent. J Environ Chem Eng. 2019; 7:103407. https://doi.org/10. 1016/j. jece.2019.103407.
  6. Jawad AH, Kadhum AM, Ngoh YS. Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies. Desalination Water Treat. 2018; 109:231-40. https://doi.org/10.5004/dwt. 2018. 21976.
  7. Adil H, Hussain Z, Kadhom M, Yousif E. Adsorptive removal of safranin-O dye from aqueous solutions using carrot seed. 2022;040011.https://doi.org/10. 1063 /5.0121105.
  8. Salih SS, Kadhom M, Shihab MA, Ghosh TK. Competitive adsorption of Pb(II) and phenol onto modified chitosan/vermiculite adsorbents. J Polym Environ. 2022;30:4238-51. https://doi.org/10.1007/ s10924-022-02515-0.
  9. Boakye P, Ohemeng-Boahen G, Darkwah L, Sokama-Neuyam YA, Appiah-Effah E, Oduro-Kwarteng S, et al. Waste biomass and biomaterials adsorbents for wastewater treatment. Green Energy Environ Technol. 2022;2022:1-25. https://doi.org/10.5772/geet.05.
  10. Moussavi G, Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial waste-waters using MgO nanoparticles. J Hazard Mater. 2009;168:806-12. https://doi.org/10.1016/j. jhazmat. 2009.02.097.
  11. Schweitzer L, Noblet J. Water contamination and pollution. Green Chemistry, Elsevier; 2018; 261-90. https://doi.org/10.1016/B978-0-12-809270-5.00011-X.
  12. Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, et al. Biological approaches to tackle heavy metal pollution: A survey of literature. J Environ Manage. 2018; 217:56-70. https://doi.org/ 10.1016/j.jenvman.2018.03.077.
  13. Mani S, Chowdhary P, Bharagava RN. Textile waste-water dyes: toxicity profile and treatment approaches. emerging and eco-friendly approaches for waste management, Singapore: Springer Singapore. 2019;219-244.https://doi.org/10.1007/978-981-10-8669 -4-11.
  14. Gupta VK, Suhas. Application of low-cost adsorbents for dye removal-A review. J Environ Manage. 2009; 90:2313-42. https://doi.org/10.1016/j.jenvman.2008. 11. 017.
  15. Kadhom M, Albayati N, Alalwan H, Al-Furaiji M. Removal of dyes by agricultural waste. Sustain Chem Pharm. 2020; 16: 100259. https://doi.org/10.1016/j. scp. 2020.100259.
  16. Al-Ghouti MA, Sweleh AO. Optimizing textile dye removal by activated carbon prepared from olive stones. Environ Technol Innov. 2019; 16:100488. https://doi.org/10.1016/j.eti.2019.100488.
  17. Karadag D, Akgul E, Tok S, Erturk F, Kaya MA, Turan M. Basic and Reactive Dye Removal Using Natural and Modified Zeolites. J Chem Eng Data. 2007; 52:2436-41. https://doi.org/10.1021/je7003726.
  18. Kadhom M, Kalash K, Al-Furaiji M. Performance of 2D MXene as an adsorbent for malachite green removal. Chemosphere. 2022; 290:133256. https://doi. org/10.1016/j.chemosphere.2021.133256.
  19. Karadag D, Akgul E, Tok S, Erturk F, Kaya MA, Turan M. Basic and Reactive Dye Removal Using Natural and Modified Zeolites. J Chem Eng Data. 2007; 52:2436-41. https://doi.org/10.1021/je7003726.
  20. Alalwan HA, Kadhom MA, Alminshid AH. Removal of heavy metals from wastewater using agricultural byproducts. J Water Supply: Res Technol-AQUA 2020; 69:99-112. https://doi.org/10.2166/aqua. 2020. 133.
  21. Decocq G, Andrieu E, Brunet J, Chabrerie O, De Frenne P, De Smedt P, et al. Ecosystem Services from Small Forest Patches in Agricultural Landscapes. Current Forestry Rep. 2016;2:30-44. https://doi.org/ 10.1007/s40725-016-0028-x.
  22. De Leijster V, Santos MJ, Wassen MJ, Ramos-Font ME, Robles AB, Díaz M, et al. Agroecological management improves ecosystem services in almond orchards within one year. Ecosyst Serv. 2019; 38: 100948.https://doi.org/10.1016/j.ecoser.2019. 100948.
  23. Lüscher A, Barkaoui K, Finn JA, Suter D, Suter M, Volaire F. Using plant diversity to reduce vulnerability and increase drought resilience of permanent and sown productive grasslands. Grass Forage Sci. 2022;77:235-46. https://doi.org/10. 1111/ gfs.12578.
  24. Ibrahim AM, Ali A, Shaban M, Rashid Hasan Y, J. M Ridha M, A. Hussein H, M. Abed K, et al. Simultaneous adsorption of ternary antibiotics (levofloxacin, meropenem, and tetracycline) by sunflower husk coated with copper oxide nano-particles. J Ecolog Eng. 2022;23:30-42. https://doi. org/10.12911/22998993/147806.
  25. Vunain E, Houndedjihou D, Monjerezi M, Muleja AA, Kodom B. Adsorption, Kinetics and equilibrium studies on removal of catechol and resorcinol from aqueous solution using low-cost activated carbon prepared from sunflower (helianthus annuus) seed hull residues. Water Air Soil Pollut. 2018; 229:366. https://doi.org/10.1007/s11270-018-3993-9.
  26. Karaboyaci M. Recycling of rose wastes for use in natural plant dye and industrial applications. J 
    Text Instit. 2014;14:1-7. https://doi.org/10.1080/ 00405000.2013.876153.
  27. Aman A, Ahmed D, Asad N, Masih R, Abd ur Rahman HM. Rose biomass as a potential biosorbent to remove chromium, mercury and zinc from conta-minated waters. Intern J Environ Stud. 2018; 75: 774-87.https://doi.org/10.1080/00207233.2018. 1429130.
  28. Canoluk C, Gursoy S Sen. Chemical modification of rose leaf with polypyrrole for the removal of Pb (II) and Cd (II) from aqueous solution. J Macromol Sci Part A. 2017; 54:782-90. https://doi.org/10.1080/ 10601325. 2017.1336722.
  29. Pelto J, Haimi S, Puukilainen E, Whitten PG, Spinks GM, Bahrami-Samani M, et al. Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite. J Biomed Mater Res A. 2010; 93A(3): 1056-1067. https://doi.org/ 10.1002/jbm.a.32603.
  30. Tavallali H, Malekzadeh H, Karimi MA, Payehghadr M, Deilamy-Rad G, Tabandeh M. Chemically modified multiwalled carbon nanotubes as efficient and selective sorbent for separation and preconcentration of trace amount of Co(II), Cd(II), Pb(II), and Pd(II). Arabian J Chem. 2019;12:1487-95. https://doi.org/10.1016/j. arabjc. 2014.10.034.
  31. Reçber Z. Adsorption of methylene blue onto spental chemilla vulgaris leaves: characterization, isotherms, kinetic and thermodynamic studies. Inter J Environ Sci Technol. 2022; 19:4803-14. https://doi.org/10. 1007/s13762-022-04053-7.
  32. Tamura M. Paeoniaceae. Flowering Plants Eudicots, Berlin, Heidelberg: Springer Berlin Heidelberg; 2007; 265-9. https://doi.org/10.1007/978-3-540-32219-1_34.
  33. [33]         Liu Q, Han R, Qu L, Ren B. Enhanced adsorption of copper ions by phosphoric acid-modified Paeonia ostii seed coats. Environ Sci Poll Res. 2020;27:43906-16. https://doi.org/10.1007/s11356-020-10296- z.
  34. Liu Q, Qu L, Ren B. Effective removal of copper ions from aqueous solution by iminodiacetic acid-functionalized Paeonia ostii seed coats. J Dispers Sci Technol. 2020; 41:1126-35. https://doi.org/10.1080/ 01932691.2019.1614457.
  35. Liu Q, Li T, Zhang S, Qu L, Ren B. Optimization and evaluation of alkali-pretreated paeonia ostii seed coats as adsorbent for the removal of Mb from aqueous solution. Polish J Chem Technol. 2018; 20:29–-36. https://doi.org/10.2478/pjct-2018-0035.
  36. Petrovska B. Historical review of medicinal plants′ usage. Pharmacogn Rev 2012; 6:1. https://doi. org/10.4103/0973-7847.95849.
  37. Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Yu AI, Mahboob T, et al. Recommended medicinal plants as source of natural products: A review. Digital Chinese Medicine. 2018; 1:131-42. https://doi.org/10.1016/ S2589-3777(19)30018-7.
  38. Riaz G, Chopra R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed Pharmacot. 2018; 102:575-86. https://doi.org/10. 1016/j. biopha.2018.03.023.
  39. McKay DL, Chen CYO, Saltzman E, Blumberg JB. Hibiscus Sabdariffa L. Tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. J Nutr. 2010; 140:298-303. https://doi.org/ 10.3945/jn.109.115097.
  40. Kaur N, Kaushal J, Mahajan P. Phytoremediation potential of hibiscus rosa-sinesis for removal of methylene blue dye and its kinetic, adsorption studies in aquatic system. Asian J Chem 2022; 34:2710-6. https://doi.org/10.14233/ajchem.2022.23906.
  41. Raja YS, Samsudin MFR, Sufian S. Development of the low-cost and green hibiscus cannabinus bioadsorbent for the removal of dye in wastewater. Arab J Sci Eng. 2021; 46:6349-58. https://doi.org/10. 1007/s13369-020-05066-5.
  42. Manivannan P, Arivoli Thiru Vi Ka S, Raja M. Isotherm analysis on the removal of safranin dye using acid activated hibiscus sabdariffa stem nano carbon. Res J Chem Environ. 2019; 23(9):94-100.
  43. Hoong HNJ, Ismail N. Removal of dye in wastewater by adsorption-coagulation combined system with Hibiscus sabdariffa as the coagulant. MATEC Web of Conferences 2018; 152:01008. https://doi.org/10. 1051/ matecconf/201815201008.
  44. Murali M. An international quarterly scientific journal some studies on the removal of chromium from electroplating Iindustry waste by the leaf powder of Hibiscus mutabilis. Nat Envi Pol Tech. 2016;15:657-60.
  45. Rolnik A, Olas B. The plants of the asteraceae family as agents in the protection of human health. Int J 
    Mol Sci. 2021;22:3009. https://doi.org/10.3390/ijms 22063009.
  46. Kaya Y, Jocic S, Miladinovic D. Sunflower. Technological innovations in major world oil crops, Volume 1, New York, NY: Springer New York; 2012, p. 85–129. https://doi.org/10.1007/978-1-4614-0356-2_4.
  47. Nguyen TB, Nguyen  KT, Chen WH, Chen CW, Bui XT, Patel AK, et al. Hydrothermal and pyrolytic conversion of sunflower seed husk into novel porous biochar for efficient adsorption of tetracycline. Bioresour Technol. 2023; 373:128711. https://doi.org/ 10.1016/j.biortech.2023.128711.
  48. Zhao W, Chen L, Jiao Y. Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Sci Eng. 2023; 16:192-202. https://doi.org/10.1016/j.wse.2023.02.002.
  49. Truskewycz A, Taha M, Jampaiah D, Shukla R, Ball AS, Cole I. Interfacial separation of concentrated dye mixtures from solution with environmentally compatible nitrogenous-silane nanoparticles modified with Helianthus annuus husk extract. J Colloid Interface Sci. 2020; 560:825-37. https://doi.org/10. 1016/ j.jcis.2019.10.108.
  50. Srikantan C, Suraishkumar GK, Srivastava S. Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots. Bioresour Technol. 2018; 257:84-91. https://doi.org/10.1016/j.biortech.2018.02.075.
  51. Yang J, Pan X. Root exudates from sunflower (Helianthus annuus L.) show a strong adsorption ability toward Cd(II). J Plant Interact. 2013; 8:263-70. https://doi.org/10.1080/17429145.2012.737030.
  52. Jain M, Garg VK, Kadirvelu K. Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology. Bioresour Technol. 2011;102:600-5. https://doi.org/10.1016/j.biortech.2010.08.001.
  53. Jain M, Garg VK, Kadirvelu K. Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J Hazard Mater. 2009; 162:365-72. https://doi.org/10.1016/j.jhazmat.2008. 05. 048.
  54. Tadayon Y, Bahrololoom ME, Javadpour S. An experimental study of sunflower seed husk and zeolite as adsorbents of Ni(II) ion from industrial wastewater. Water Resour Ind. 2023; 30:100214. https://doi.org/ 10.1016/j.wri.2023.100214.
  55. [55]         Cesur Özcan EN, Gürel L. A comparison for the removal of two different textile dyes by raw Helianthus annuus L. seed shells. Inter J Enviro Sci Technol. 2023; 20:6791-804. https://doi.org/10.1007/ s13762-022-04729-0.
  56. Anastopoulos I, Giannopoulos G, Islam A, Ighalo JO, Iwuchukwu FU, Pashalidis I, et al. Potential environmental applications of Helianthus annuus (sunflower) residue-based adsorbents for dye removal in (waste)waters. Biomass-Derived Materials for Environmental Applications, Elsevier; 2022, 307-18. https://doi.org/10.1016/B978-0-323-91914-2.00008-8.
  57. Vasudevan P, Kashyap S, Sharma S. Tagetes: a multipurpose plant. Bioresour Technol. 1997; 62:29-35. https://doi.org/10.1016/S0960-8524(97)00101-6.
  58. Bazan A, Nowicki P, Pietrzak R. Removal of NO2 by carbonaceous adsorbents obtained from residue after supercritical extraction of marigold. Adsorption. 2016; 22:465-71. https://doi.org/10.1007/s10450-015-9709-1.
  59. Bazan-Wozniak A, Wolski R, Paluch D, Nowicki P, Pietrzak R. Removal of organic dyes from aqueous solutions by activated carbons prepared from residue of supercritical extraction of marigold. Materials. 2022; 15:3655. https://doi.org/10.3390/ma15103655.
  60. Mondal MK, Mishra G, Kumar P. Adsorption of cadmium (II) and chromium (VI) from aqueous solution by waste marigold flowers. J Sustain Develop Energy Water  Environ System. 2015; 3:405-415. https://doi.org/10.13044/j.sdewes.2015.03.0030.
  61. Upadhyay SK, Devi P, Kumar V, Pathak HK, Kumar P, Rajput VD, et al. Efficient removal of total arsenic (As3+/5+) from contaminated water by novel strategies mediated iron and plant extract activated waste flowers of marigold. Chemosphere. 2023; 313:137551. https://doi.org/10.1016/j.chemosphere. 2022.137551.
  62. Prajapati AK, Mondal MK. Novel green strategy for CuO–ZnO–C nanocomposites fabrication using marigold (Tagetes spp.) flower petals extract with and without CTAB treatment for adsorption of Cr(VI) and Congo red dye. J Environ Manage. 2021; 290:112615. https://doi.org/10.1016/j.jenvman.2021.112615.
  63. Agarwal A, Kumar A, Gupta P, Tomar R, Singh NB. Cu (II) ions removal from water by charcoal obtained from marigold flower waste. Mater Today Proc. 2021;34:875-9. https://doi.org/10.1016/j.matpr. 2020. 11.046.
  64. Chang M. Research progress on calendula officinalis Pb/Cd compound pollution. J Phys Conf Ser. 2021;1865:022023. https://doi.org/10.1088/1742-6596 /1865/ 2/022023.
  65. Hasanin T, Ahmed S, Barakat T. Nano-chamomile waste as a low-cost biosorbent for rapid removal of heavy metal ions from natural water samples. Egypt J Chem. 2019;62(5):937-953. https://doi.org/10. 21608/ ejchem.2019.5921.1504.
  66. Ahmed W, Mehmood S, Núñez-Delgado A, Ali S, Qaswar M, Shakoor A, et al. Adsorption of arsenic (III) from aqueous solution by a novel phosphorus-modified biochar obtained from Taraxacum mongolicum Hand-Mazz: Adsorption behavior and mechanistic analysis. J Environ Manage. 2021; 292:112764. https://doi.org/10.1016/j.jenvman. 2021. 112764.
  67. Fuks L, Oszczak A, Dudek J, Majdan M, Trytek M. Removal of the radionuclides from aqueous solutions by biosorption on the roots of the dandelion (Taraxacum officinale). Inter J Environ Sci Technol. 2016;13:2339-52. https://doi.org/10.1007/s13762-016-1067-3.
  68. Almasi A, Navazeshkha F, Mousavi SA. Biosorption of lead from aqueous solution onto Nasturtium officinale: performance and modelingBiosorption of lead from aqueous solution onto Nasturtium officinale: performance and modeling. Desalination Water Treat 2017; 65:443-50. https://doi.org/10. 5004/dwt. 2017. 20308.
  69. Pourmanouchehri Z, Chahardoli A, Qalekhani F, Derakhshankhah H, Shokoohinia Y, Fattahi A, et al. Green modification of iron oxide nanoparticles with achillea wilhelmsii and investigation of their performance for methylene blue adsorption. J Nanostruct. 2022;12:99-112. https://doi.org/10. 22052 / JNS.2022.01.010.