Current Trends in Cool Coating Technology

Document Type : Original Article

Authors

1 Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran,‏ Iran

2 Department of Printing Inks Science and Technology, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

3 Department of Research & Development, Khouzestan Electricity Power Distribution Company (KEPDC), P.O. Box: 61338-83581, Ahvaz, Iran

Abstract

Global warming can increase urban temperatures by up to 10 °C, with significant health, environmental and energy implications. The materials of the building and urban fabric have an impact on the thermal balance of the city and significantly increase the risk of urban warming. This review describes advances in the design, manufacture and application of ultra-low and low surface temperature coatings for buildings and equipment. It covers the definitions, mechanisms, evaluations, and recent technological advances of natural, light-colored, infrared solar reflective, PCM-doped, thermochromic, quantum dot, and plasmonic cool materials. A comparative analysis of the experimental results on the cooling capacity and thermal performance of the traditional or new materials is provided. It is shown that natural cool coatings can reflect 80-90 % of solar energy and save 18 % of cooling energy, white and colored cool pigments can exhibit 85-95 % solar reflectance, and novel cool materials can reflect more than 93 % of solar thermal energy. In addition, PCM-doped cool coatings can reduce the surface temperature by 2.5 to 19.7 °C. The aim is to present the best method among those proposed in terms of energy and raw material cost for cool coatings. This review also explains how cool coatings with high solar reflectance can absorb less solar energy and increase the lifetime and efficiency of power systems and electronic devices that are typically exposed to sunlight. 

Keywords

Main Subjects


  1. Wicks ZW, Jones FN, Pappas SP. Organic coatings: science and technology. 2, Applications, properties, and performance. New York U.A.: Wiley; 1994.
  2. Han A, Ye M, Liu L, Feng W, Zhao M. Estimating thermal performance of cool coatings colored with high near-infrared reflective inorganic pigments: Iron doped La2Mo2O7 compounds. Energy Build. 2014; 84:698-703. https://doi.org/10.1016/j.enbuild.2014.08. 024.
  3. Uemoto KL, Sato NMN, John VM. Estimating thermal performance of cool colored paints. Energy Build. 2010;42(1):17-22. https://doi.org/10.1016/j. enbuild. 2009. 07.026.  
  4. Dong S, Jing Yang Quek, Van AM, Jana S. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings. Indust Eng Chem Res. 2020; 59(40):17901-10. https://doi.org/10.1021/acs.iecr.0c03412.
  5. Santamouris M, Synnefa A, Karlessi T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol Energy. 2011; 85(12):3085-102. https://doi.org/10.1016/j.solener. 2010. 12.023.
  6. Dursun I, Güner S, Şengör I, Erenoğlu A, Erdinç O, Catalão J. Practical evidence-based evaluation of a combined heat reduction technique for power transformer buildings. Electronics. 2020; 9(12):2127-7. https://doi.org/10.3390/electronics9122127.
  7. Zhang C, Kazanci OB, Levinson R, Heiselberg P, Olesen BW, Chiesa G, et al. Resilient cooling strategies-A critical review and qualitative assessment. Energy Build. 2021;251:111312. https://doi.org/10. 1016/j.enbuild.2021.111312.
  8. Hajidavalloo E, Mohamadianfard M. Effect of sun radiation on the thermal behavior of distribution transformer. Appl Thermal Eng. 2010; 30(10):1133-9. https://doi.org/10.1016/j.applthermaleng.2010.01. 028.
  9. Sharma R, Tiwari S, Tiwari SK. Highly reflective nanostructured titania shell: A sustainable pigment for cool coatings. ACS Sustain Chem Eng. 2017; 6(2):2004-10. https://doi.org/10.1021/acssuschemeng. 7b03423.
  10. Levinson R, Berdahl P, Akbari H, Miller W, Joedicke I, Reilly J, et al. Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials. Sol Energy Mater Sol Cells. 2007; 91(4):304-14. https://doi.org/10.1016/j. solmat. 2006.06.062.
  11. Pisello AL. State of the art on the development of cool coatings for buildings and cities. Sol Energy. 2017; 144:660-80. https://doi.org/10.1016/j.solener. 2017.01.068.
  12. Song Z, Zhang W, Shi Y, Song J, Qu J, Qin J, et al. Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency. Energy Build. 2013; 63:49–58. https://doi.org/10.1016/j.enbuild.2013.03. 051.
  13. Muselli M. Passive cooling for air-conditioning energy savings with new radiative low-cost coatings. Energy Build. 2010; 42(6):945-54. https://doi.org/10. 1016/ j.enbuild.2010.01.006.
  14. Synnefa A, Santamouris M, Apostolakis K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol Energy. 2007;81(4):488-97. https://doi.org/10.1016/j.solener.2006.08.005.
  15. Dornelles K, Caram R, Sichieri E. Natural weathering of cool coatings and its effect on solar reflectance of roof surfaces. Energy Proc. 2015; 78:1587-92. https://doi.org/10.1016/j.egypro. 2015. 11. 216.
  16. ASTM E903-12, 2012. Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. ASTM.
  17. ASTM C1549, 2002. Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer, ASTM. 2002.
  18. ASTM E1918-06, 2015. Standard Test Method for Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field. ASTM. 2015.
  19. ASTM C1371-15. Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers. ASTM. 2015.
  20. ASTM G173-03, 2008. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37_Tilted Surface. ASTM. 2008.
  21. Gao Q, Wu X, Shi F. Novel superhydrophobic NIR reflective coatings based on Montmorillonite/SiO2 composites for energy-saving building. Construc Build Mater. 2022; 326:126998. https://doi.org/ 10.1016/j.conbuildmat.2022.126998.
  22. Uemoto KL, Sato NMN, John VM. Estimating thermal performance of cool colored paints. Energy Build. 2010; 42(1):17-22. https://doi.org/10.1016/ j.enbuild.2009.07.026
  23. Zheng Q, Xiong S, Wu X, Kuang J, Liu W, Cao W. Near infrared reflection and hydrophobic properties of composite coatings prepared from hollow glass microspheres coated with needle-shaped rutile shell. Materials. 2022; 15(23):8310. https://doi.org/10. 3390/ ma15238310.
  24. Synnefa A, Santamouris M, Livada I. A study of the thermal performance of reflective coatings for the urban environment. Sol Energy. 2006; 80(8):968-81. https://doi.org/10.1016/j.solener.2005.08.005.
  25. Asaeda T, Ca VT, Wake A. Heat storage of pavement and its effect on the lower atmosphere. Atmosph Environ. 1996;30(3):413-27. https://doi.org/ 10.1016/1352-2310(94)00140-5
  26. Santamouris M, Papanikolaou N, Livada I, Koronakis I, Georgakis C, Argiriou A, et al. On the impact of urban climate on the energy consumption of buildings. Sol Energy. 2001;70(3):201-16. https://doi.org/10. 1016/ S0038-092X(00)00095-5.
  27. Doulos L, Santamouris M, Livada I. Passive cooling of outdoor urban spaces. The role of materials. Sol Energy. 2004;77(2):231-49. https://doi.org/10.1016/j. solener.2004.04.005
  28. Bretz S, Akbari H, Rosenfeld A. Practical issues for using solar-reflective materials to mitigate urban heat islands. Atmospher Environ. 1998;32(1):95-101. https://doi.org/10.1016/S1352-2310(97)00182-9.
  29. David A. Young, Samantha Wijewardane, Elias Stefanakos1 D. Yogi Goswami, Passive Radiative Cooling of Structures with Thick Film Nano-composites, Conference Paper October 2021, https://doi.org/10.18086/swc.2021.42.03.
  30. Dias C, Veloso R C, Maia J, Ramos NMM, Ventura J. Oversight of radiative properties of coatings pigmented with TiO2 nanoparticles. Energy Build. 2022;271:112296-6.https://doi.org/10.1016/j. enbuild. 2022.112296.
  31. Dornelles K, Caram R, Sichieri E. Natural weathering of cool coatings and its effect on solar reflectance of roof surfaces. Energy Procedia. 2015; 78:1587-92. https://doi.org/10.1016/j.egypro.2015.11. 216.
  32. Rosati A, Fedel M, Rossi S. NIR reflective pigments for cool roof applications: A comprehensive review. J Clean Prod. 2021; 313:127826. https://doi.org/10. 1016/j.jclepro.2021.127826.
  33. Malshe V, Bendiganavale A. Infrared reflective inorganic pigments. Recent Patent Chem Eng. 2008;1(1):67-79. https://doi.org/10.2174/1874478810801010067. 
  34. Pisello AL, Cotana F. The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring. Energy Build. 2014; 69:154-64. https://doi.org/10. 1016/ j.enbuild.2013.10.031. 
  35. Rossi F, Castellani B, Presciutti A, Morini E, Filipponi M, Nicolini A, et al. Retroreflective façades for urban heat island mitigation: Experimental investigation and energy evaluations. Appl Energy. 2015; 145:8-20. https://doi.org/10.1016/j.apenergy. 2015.01.129.
  36. Levinson R, Chen S, Berdahl P, Rosado P, Medina LA. Reflectometer measurement of roofing aggregate albedo. Sol Energy. 2014;100:159-71. https://doi.org/ 10.1016/j.solener.2013.11.006.
  37. Akbari H, Matthews HD. Global cooling updates: Reflective roofs and pavements. Energy Build. 2012; 55:2-6. https://doi.org/10.1016/j.enbuild.2012.02.055.
  38. Santamouris M, Yun GY. Recent development and research priorities on cool and super cool materials to mitigate urban heat island. Renew Energy. 2020; 161:792-807. https://doi.org/10.1016/j.renene.2020. 07. 109.
  39. Jose S, Joshy D, Narendranath SB, Periyat P. Recent advances in infrared reflective inorganic pigments. Sol Energy Mater Sol Cells. 2019; 194:7-27. https://doi.org/10.1016/j.solmat.2019.01.037.
  40. Fangli Y, Peng H, Chunlei Y, Shulan H, Jinlin L. Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. J Mater Chem. 2003;13(3):6347. https://doi.org/10.1039/B208346A. 
  41. Raj AKV, Prabhakar Rao P, Sameera S, Divya S. Pigments based on terbium-doped yttrium cerate with high NIR reflectance for cool roof and surface coating applications. Dyes Pigm. 2015; 122:116-25. https://doi.org/10.1016/j.dyepig.2015.06.021.
  42. Divya S, Das S. Eco-friendly Li3InB2O6 based red pigments for various IR blocking cool coating applications. Opt Mater. 2020; 109:110410. https://doi.org/10.1016/j.optmat.2020.110410. 
  43. Mobarhan Gh, Souri A, Seyed Mostafavi S K, Ghahari M, Safi M, Synthesizing and characterizing the hybrid pigment Fe0.7Cr1.3O3 with high NIR reflectance for sustainable energy saving applications. Prog Color Colorant Coat. 2022; 15(4): 341-353. https://doi.org/10.30509/PCCC.2022.166933.1147.
  44. Pozza G, Ajò D, Chiari G, De Zuane F, Favaro M. Photoluminescence of the inorganic pigments Egyptian blue, Han blue and Han purple. J Cultural Herit. 2000;1(4):393-8. https://doi.org/10.1016/ S1296- 2074(00)01095-5.
  45. Jose S, Jayaprakash A, Laha S, Natarajan S, Nishanth KG, Reddy MLP. YIn0.9Mn0.1O3–ZnO nano-pigment exhibiting intense blue color with impressive solar reflectance. Dye Pigm. 2016; 124:120-9. https://doi.org/10.1016/j.dyepig. 2015.09. 014.
  46. Jing J, Zhang Y, Sun J, Zhao X, Gao D, Zhang Y. A comparative study on different RE-doped (RE=Pr, Nd, Sm) SrCuSi4O10 blue pigments with high near-infrared reflectance. Dye Pigm. 2018; 150:9-15. https://doi.org/10.1016/j.dyepig.2017.10.045.
  47. Zhou Y, Weng X, Yuan L, Deng L. Influence of composition on near infrared reflectance properties of M-doped Cr2O3(M=Ti,V) green pigments. J Ceram Soc Japan. 2014; 122(1425):311-6. https://doi.org/ 10.2109/jcersj2.122.311. 
  48. Tao Z, Zhang W, Huang Y, Wei D, Seo HJ. A novel pyrophosphate BaCr2(P2O7)2 as green pigment with high NIR solar reflectance and durable chemical stability. Solid State Sci. 2014; 34:78-84. https://doi. org/10.1016/j.solidstatesciences.2014.05.016.
  49. Liang S, Zhang H, Luo M, Liu H, Bai Y, Xu H, et al. Preparation of Cr2O3-based pigments with high NIR reflectance via thermal decomposition of CrOOH. Transaction Nonferrous Metals Soc China. 2015; 25(8):2646-7.https://doi.org/10.1016/S1003-6326(15) 63887-0. 
  50. Martini F, Geppi M, Barcaro G, Monti S, Luca Contiero, Ruggeri G, et al. Structure and Dynamics of Perylene Bisimide Pigments for “Cool” Organic Coatings by Solid-State NMR: A Combined Experimental and DFT Study. J Phys Chem C. 2020; 124(33):17971-80. https://doi.org/10.1021/ acs.jpcc. 0c04940. 
  51. Qin J, Qu J, Song J, Song Z, Zhang W, Shi Y, et al. The optical properties of black coatings and their estimated cooling effect and cooling energy savings potential. J Power Energy Eng. 2014; 2(4):68–75. https://doi.org/10.4236/jpee.2014.24011. 
  52. Karlessi T, Santamouris M, Synnefa A, Assimakopoulos D, Didaskalopoulos P, Apostolakis K. Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings. Build Environ. 2011; 46(3):570-6. https://doi.org/10.1016/j.buildenv.2010.09.003
  53. Marani A, Nehdi ML. Integrating phase change materials in construction materials: Critical review. Construct Build Mater. 2019; 217:36-49. https://doi. org/10.1016/j.conbuildmat.2019.05.064.
  54. Kim YR, Khil BS, Jang SJ, Choi WC, Yun HD. Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete. Thermochimica Acta. 2015; 613:100-7. https://doi.org/10.1016/j.tca. 2015. 05.025.
  55. Sharifi NP, Mahboub KC. Application of a PCM-rich concrete overlay to control thermal induced curling stresses in concrete pavements. Construct Build Mater. 2018; 183:502-12. https://doi.org/ 10.1016/j.conbuildmat.2018.06.179. 
  56. Zheng Q, Xiong S, Wu X, Kuang J, Liu W, Cao W. Near infrared reflection and hydrophobic properties of composite coatings prepared from hollow glass microspheres coated with needle-shaped rutile shell. Materials. 2022;15(23):8310. https://doi.org/10.3390/ ma 15238310.
  57. Li S, Bin Y, Wang X, Wu X, Zhao W, Liu M. Study on the optimal addition of hollow glass microsphere into an anticorrosive cool coating for oil storage tanks. J Adh Sci Technol. 2022; 37(3):548-564. https://doi.org/10.1080/01694243.2022.2034712.
  58. Dong Y, Meng W, Wang F, Han H, Liang H, Li X, et al. “Warm in winter and cool in summer”: scalable biochameleon inspired temperature-adaptive coating with easy preparation and construction. Nano Lett. 2023; 19, 9034-9041. https://doi.org/10.1021/acs. nanolett.3c02733. 
  59. Panák O, Držková M, Kaplanová M. Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature. Dyes Pigm. 2015; 120:279-87. https://doi.org/10. 1016/j.dyepig.2015.04.022.
  60. White MA, LeBlanc M. Thermochromism in commercial products. J Chem Edu. 1999;76(9):1201. https://doi.org/10.1021/ed076p1201.
  61. Seeboth A, Lötzsch D, Ruhmann R, Muehling O. Thermochromic polymers-function by design. Chem Rev. 2014;114(5):3037-68. https://doi.org/10.1021/cr 400462e.
  62. Wawrzyńczyk D, Szeremeta J, Samoć M, Nyk M. Size-dependent emission kinetics and sensing capabilities of CdSe quantum dots functionalized with penicillamine ligands. Sensor Actuat B: Chem. 2017; 252:483-91. https://doi.org/10.1016/j.snb.2017. 06.029. 
  63. Wuister SF, van Houselt A, de Mello Donegá C, Vanmaekelbergh D, Meijerink A. Temperature antiquenching of the luminescence from capped CdSe quantum dots. Angew Chem Intern Edi. 2004; 43(23): 3029-33. https://doi.org/10.1002/anie. 200353532. 
  64. Goswami SK, Kim TS, Oh E, Challa KK, Kim ET. Optical properties and effect of carrier tunneling in CdSe colloidal quantum dots: A comparative study with different ligands. AIP Adv. 2012; 2(3):032132. https://doi.org/10.1063/1.4745080. 
  65. Goffredo GB, Accoroni S, Totti C, Romagnoli T, Valentini L, Munafò P. Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces. Build Environ. 2017; 112:209-22. https://doi.org/10.1016/j.buildenv.2016. 11.034.
  66. Santamouris M, Synnefa A, Kolokotsa D, Dimitriou V, Apostolakis K. Passive cooling of the built environment - use of innovative reflective materials to fight heat islands and decrease cooling needs. Inter J Low-Carbon Technol. 2008; 3(2):71-82. https://doi. org/10.1093/ijlct/3.2.71
  67. Goffredo GB, Accoroni S, Totti C, Romagnoli T, Valentini L, Munafò P. Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces. Build Environ. 2017; 112: 209-222. https://doi.org/10.1016/j.buildenv.2016.11. 034
  68. Kumar S, Verma NK, Singla ML. Study on reflectivity and photostability of Al-doped TiO2 nanoparticles and their reflectors. J Mater Res. 2012; 28(3):521-8. https://doi.org/10.1557/jmr.2012.361.