Study of Physicochemical Properties of PVC Thin Films Affected by Carbon Nanotubes to Prevent Photodegradation During UV Light Exposure

Document Type : Original Article

Authors

1 Polymer Research Unit, College of Science Al-Mustansiriyah University, P.O. Box: 10052, Baghdad, Iraq

2 Middle Technical University Institute of Technology, P.O. Box: 50405, Baghdad, Iraq

3 Department of Mechanical Engineering, College of Engineering, Al-Nahrain University, P.O. Box: 64040, Jadria, Baghdad, Iraq

Abstract

This study investigates the impact of carbon nanotubes on the structure of poly(vinyl chloride). Carbon nanotubes derived from corn cobs (1 g) and molten sodium hydroxide (3 g) at a weight ratio of 1:3 were used as additives. These doped poly(vinyl chloride) samples were analyzed. Different concentrations of carbon nanotubes (0.25, 0.50, and 0.75) were incorporated into the poly(vinyl chloride) lattice. The effects of these additions demonstrated remarkable resistance to continuous ultraviolet light exposure, effectively countering photodegradation. Before introducing the nanoparticles, volatile substances generated free radicals, leading to reduced weight and molecular weight in PVC thin films. To counteract degradation, stabilizers were introduced to the polymer. Photostability was achieved by doping PVC with carbon nanotubes, with monitoring of carbonyl groups (ICO), polyene (IC=C), and hydroxyl (IOH) growth against irradiation time. Upon adding carbon nanotubes, ICO values increased from 0.16 to 0.24, and IC=C values rose from 0.17 to 0.28. Conversely, IOH decreased from 0.14 to 0.058, mitigating photodegradation. Crystalline size and micro-strain were calculated. The study also tracked surface morphology and weight loss changes in nanocomposite PVC thin films upon irradiation. The findings demonstrated the effective UV-blocking capabilities of carbon nanotube-PVC blends, providing substantial protection to thin films. Additionally, weight loss calculations, polymeric thin film surface changes, and viscosity assessments were conducted.

Keywords

Main Subjects


  1. Lewandowski K, Skórczewska K. A brief review 
    of poly(vinyl chloride) (PVC)  recycling. Polymers. 2022; 15: 3035, 1-14. https://doi.org/10.3390/polym 14153035.
  2. Akl AA, El Radaf IM, Hassanien AS. Intensive comparative study using X-Ray diffraction for investigating microstructural parameters and crystal defects of the novel nanostructural ZnGa2S4 thin films. Superlatt Microstruct. 2020; 143: 106544. https://doi. org/10.1016/j.spmi.2020.106544.
  3. El Radaf IM, Hassanien AS. Effect of thickness on structural, optical, and optoelectrical properties of sprayed CuInSnS4 thin films as a new absorber layer for solar cells, Phys B: Cond Matter. 2023; 659: 414867. https://doi.org/10.1016/j.physb.2023.414867. 
  4. Akl AA, Hassanien AS. Comparative microstructural studies using different methods: Effect of Cd-addition on crystallography, microstructural properties, and crystal imperfections of annealed nano-structural thin CdxZn1-xSe films. Phys B: Phys Cond Matter. 2021; 620: 413267. https://doi.org/10.1016/j.physb.2021. 413267.
  5. Abdullah SM, Alwan AF, Majeed AM. The Influence of the UV light on the PVC sheets adopted with some aromatic amines, ANJS. 2022; 25: 9-13. https://doi. org/10.22401/ANJS.25.1.02. 
  6. Yousif E, Hasan A. Photostabilization of poly(vinyl chloride) – Still on the run. J Taibah Univ Sci. 2015; 4: 421-448. http://dx.doi.org/10.1016/j.jtusci.2014. 09.007.
  7. El-Denglawey A, Aly KA, Dahshan A, Hassanien AS. Optical characteristics of thermally evaporated thin a-(Cu2ZnGe)50−xSe50+x films. ECS J Solid-State Sci Techn. 2022; 11: 044006. https://doi.org/10.1149/ 2162-8777/ac627b.
  8. Saleh TAK, Al‐Tikrity ET, Yousif E, Al-Mashhadani MH, Jawad AH, Preparation of schiff bases derived from chitosan and investigate their photostability and thermal stability. Phys Chem Res. 2022; 10: 549-557. http://dx.doi.org/10.22036/PCR.2022.333808.2051.
  9. Shaalan N, Laftah N, El-Hiti GA, Alotaibi MH, Muslih R, Ahmed DS, Yousif E. Poly(vinyl Chloride) photostabilization in the presence of schiff bases containing a thiadiazole moiety. Molecules. 2018; 23(4):913.http://dx.doi.org/10.3390/molecules23040913.
  10. Sa'aedi A, Akl AA, Hassanien AS. Effective role of Rb doping in controlling the crystallization, crystal imperfections, and microstructural and morphological features of ZnO-NPs synthesized by the sol–gel approach. Cryst Eng Comm. 2022; 24: 4661-4678.  https://doi.org/10.1039/D2CE00483F.
  11. Mohammed SA, Yusop RM, Mohammed MA, Abed RN, Ahmed DS, Ahmed AA, Ahmed A, Ali B, Yousif E. Additives aid switch to protect the photodegradation of plastics in outdoor construction. NJES. 2019; 22: 277-282. http://doi.org/10.29194/ NJES.22040277. 
  12. Alhaydary E, Yousif E, Al-Mashhadani MH, Ahmed DS, Jawad AH, Bufaroosha M, Ahmed AA. Sulfamethoxazole as a ligand to synthesize di-and tri-alkyltin (IV) complexes and using as excellent photo-stabilizers for PVC. J Polym Res. 2021; 28: 1-19. https://doi.org/10.1007/s10965-021-02822-5. 
  13. Akl AA, El Radaf IM, Hassanien AS. An extensive comparative study for microstructural properties and crystal imperfections of Novel sprayed Cu3SbSe3 Nanoparticle-thin films of different thicknesses. Optik. 2020; 227: 165837. https://doi.org/10.1016/j.ijleo. 2020.165837.
  14. Al-Mashhadani MH, Salman EA, Husain AA, Abdallh M, Bufaroosha M, Yousif E. Utilizing organic aromatic melamine moiety to modify poly(vinyl chloride) chemical Structure and micro CuO that plays an important role to enhance its photophysical features. Indones J Chem. 2022; 22(6): 1187-1194. http://dx.doi.org/10.22146/ijc.70263.
  15. Shnawa HA, Khalaf MN, Jahani Y, Taobi AAH. Efficient thermal stabilization of polyvinyl chloride with tannin-Ca complex as bio-based thermal stabilizer. Mater Sci Appl. 2015; 6: 360-372. http://dx.doi.org/10.4236/msa.2015.65042.
  16. Abdullah AM, Alwan LH, Ahmed AA, Abed RN. Physical study of PVA filled with carbon nanotube and nano carbon with roughness morphology. J Phys Chem Res. 2023; 11: 747-760. http://dx.doi.org/10. 22036/PCR.2022.362088.2195.
  17. Yousif E, Hasan A, El-hiti GA. Spectroscopic, physical and topography of photochemical process of PVC films in the presence of schiff base metal. Complexes. 2016; 8: 204, 1-13. https://doi.org/ 10. 3390/polym8060204.
  18. Abed RN, Yousif E, Abed ARN, Rashad AA. Synthesis thin films of poly(vinyl chloride) doped by aromatic organosilicon to absorb the incident light. Silicon. 2022; 14: 11829-11845. https://doi.org/10. 1007 /s12633-022-01893-3.
  19. Abed RN, Abed ARN, Abed AN. Electrical conductivity of carbon ash surface immersed with nanoparticles (Co3O4-Cr2O3) for spectroscopic selective surfaces. Poly Bull. 2023; 80: 11207-11224. http://dx.doi.org/10.1007/s00289-022-04601-8.
  20. Hassanien AS, Aly KA, Elsaeedy HI, Alqahtani A. Optical characterization and dispersion discussions of the novel thermally evaporated thin a-S50-xGe10CdxTe40 films. Phys A. 2022; 128: 1021. https://doi.org/10.1007/s00339-022-06127-2.
  21. Hadi AG, Jawad K, El-Hiti GA, Alotaibi MH, Ahmed AA, Ahmed DS, Yousif E. Photostabilization of poly(vinyl chloride) by organotin(IV) compounds against photodegradation. Molecules. 2019; 24:3557. https://doi.org/10.3390/molecules24193557
  22. Abdullah AM, Alwan LH, Ahmed AA, Abed RN. Optical and physical properties for the nanocomposite poly(vinyl chloride) with affected of carbon nanotube and nano carbon. Prog Color Colorant Coat. 2023; 16(3): 331-345. https://doi.org/10.30509/PCCC. 2023.167082.1198
  23. Hassanien AS. El Radaf IM. Effectiveness of Sn-addition on optical properties and physicochemical parameters of SnxSb2-xSe3 thin films. Mater Chem Phys. 2023; 303: 127827. https://doi.org/10.1016/j. matchemphys. 2023.127827.
  24. Ajayan PM, Vajtai R. Properties and applications of carbon nanotubes, J Carbon Filaments Nanotub Common Orig Differing Appl. 2001; 32: 315-330. https://doi.org/10.1007/978-94-010-0777-1_23.
  25. Hassanien AS, Akl AA, El Redaf IM. Optical characteristics of the novel nanosized thin ZnGa2S4 films sprayed at different deposition times: Determination of optical band-gap energy using different methods, Emerg. Mater. 2023; 6: 943-964. https://doi.org/10.1007/s42247-023-00493-0
  26. Hassanien AS, El Radaf IM. Effect of fluorine doping on the structural, optical, and electrical properties of spray deposited Sb2O3 thin films. Mater Sci Semicond Process. 2023; 160: 107405. https://doi.org/10.1016/j. mssp.2023.107405. 
  27. Saleh TA, Al‐Tikrity ETB, Ahmed DS, El‐Hiti GA, Kariuki BM, Yaseen AA, Ahmed A, Yousif E. Monitoring physicochemical properties of transparent PVC films containing captopril and metal oxide nanoparticles to assess UV blocking. J Poly Res. 2022; 29: 249. https://doi.org/10.1007/s10965-022-03097-0. 
  28. Abdel‑Fattah E, Alharthi AI, Fahmy T. Spectroscopic, optical and thermal characterization of polyvinyl chloride‑based plasma‑functionalized MWCNTs composite thin films. Appl Phys A. 2019; 125: 475. https://doi.org/10.1007/s00339-019-2770-y
  29. Abed RN, Abed ARN. Characterization effect of copper oxide and cobalt oxide nanocomposite on poly(vinyl chloride) doping process for solar energy applications. Prog Color Colorants Coat. 2022; 15(2): 235-241. https://doi.org/10.30509/PCCC.2021.166858.1123.
  30. Omer RM, Al-Tikrity ETB, Abed RN, Kadhom M, Jawad AH, Yousif E. Electrical conductivity and surface morphology of PVB films doped with different nanoparticles. Prog Color Colorants Coat. 2022; 15(3): 191-202. https://doi.org/10.30509/PCCC. 2021.166839.1120.
  31. Abed RN, Al-Sahib NK, Khalifa AJN. Energy gap demeanor for carbon doped with chrome nanoparticle to increase solar energy absorption. Prog Color Colorants Coat. 2020; 13(2): 143-154. https://doi. org/10.30509/PCCC.2020.81613.
  32. Salam B, El-Hiti GA, Bufaroosha M, Ahmed DS, Ahmed A, Alotaibi MH, Yousif E. Tin complexes containing an atenolol moiety as photostabilizers for poly(vinyl chloride). Polymers. 2020; 12: 2923. https://doi.org/10.3390/polym12122923. 
  33. Silvano, LT, Vittorazzo AL, Araujo RG. Effect of preparation method on the electrical and mechanical properties of PVC/Carbon nanotubes nanocomposites. Mater Res. 2018; 21: 1-6. https://doi.org/10.1590/ 1980- 5373-MR-2017-114.8.
  34. jasim B, husain A, aboud N, Rheima A. Aqueous solution decolorization utilizing low cost activated carbon. Egyptian J Chem. 2022; 65: 1395-1400. https://doi.org/10.21608/EJCHEM.2022.152591.6610.
  35. Akl AA, Hassanien AS. Microstructure characterization of Al-Mg alloys by X-ray diffraction line profile analysis. Inter J Adv Res. 2014; 2: 1-9. https://www.journalijar.com/uploads/838_IJAR-4360. pdf130, 1-14. 
  36. Medhat A, El-Maghrabi HH, Abdelghany A, Abdel-Menem NM, Raynaud P, Moustafa YM, Elsayed MA, Nada AA.,Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surf Sci Adv. 2021; 3: 100037. https://doi.org/10.1016/ j.apsadv. 2020.100037.
  37. Abed RN, Sattar MA, Hameed SS, Ahmed DS, Al-Baidhani M, Kadhom M, Jawad AH, Zainulabdeen K, Al-Mashhadani MH, Rashad AA, Yousif E. Optical and morphological properties of poly(vinyl chloride)-nano-chitosan composites doped with TiO2 and Cr2O3 nanoparticles and their potential for solar energy applications. Chem Papers. 2023; 77: 757-769. https://doi.org/10.1007/s11696-022-02512-6.
  38. Hassanien AS, Sharma I, Sharma P. Inference of Sn addition on optical properties of the novel thermally evaporated thin a-Ge15Te50S35-xSnx films and some physical properties of their glasses. Mater Chem Phys. 2023; 293: 126887. https://doi.org/10.1016/j. matchemphys.2022.126887.
  39. Sharma I, Sharma P, Hassanien AS. Optical properties and optoelectrical parameters of the quaternary chalcogenide amorphous Ge15SnxS35-xTe50 films. J Non-Crys Solids. 2022; 590: 121673. https://doi.org/10.1016/j.jnoncrysol.2022.121673
  40. Mark JE. Physical properties of polymers handbook. Springer, New York, 2007; pp. 17-26. https://doi.org/10.1007/978-0-387-69002-5.
  41. Venkateshaiah A, Padil VVT, Nagalakshmaiah M, Waclawek S, Cˇerník M, Varma, RS. Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers (Basel). 2020; 12: 512. https://doi.org/ 10.3390/polym12030512.
  42. Al-Mashhadani MH, Thamer H, Adil H, Ahmed A, Ahmed DS, Bufaroosha M, Jawad AH, Yousif E. Environmental and morphological behavior of polystyrene films containing schiff base moiety. Mater Today Proc. 2021; 42: 2693-2699. https://doi.org/ 10.1016/j.matpr.2020.12.706.
  43. Abed RN, Yousif E, Abed ARN, Rashad AA, Hadawey A, Jawad AH. Optical properties of PVC composite modified during light exposure to give high absorption enhancement. J Non-Crys Solids. 2021; 570: 120946. https://doi.org/10.1016/j. jnoncrysol. 2021.120946.
  44. Tanrikulu EE, Variation of electrical and dielectric characteristics of Schottky diodes (SDs) depending on the existence of PVC and carbon-nanotube (CNT)-doped PVC interlayers. J Mater Sci. Mater Electron. 2023; 34: 63. https://doi.org/10.1007/s10854-022-09479-w.