High Durable Latex-Modified-Concretes: The Effect of Minimum Film Formation Temperature of Acrylic-Styrene Latex

Document Type : Original Article

Authors

Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran.

Abstract

This paper aimed to investigate the effect of the minimum film formation temperature (MFFT) of acrylic-styrene latexes (ASL) on the durability, physical, and mechanical characteristics of latex-modified concretes (LMCs). LMCs were designed and manufactured incorporating three ASLs with different MFFTs, namely 0, 8, and 25 °C (Water/Cement mass ratio=0.445 and latex/water mass ratio=0.05). Water absorption (WA), rapid chloride ion migration, carbonation, compressive-splitting tensile strength, and scanning electron microscopy (SEM) were employed to study LMCs properties. The performance of LMCs was found to be dependent on the MFFT of the latexes strongly. The results revealed that LMCs containing ASL with lower MFFT compared to ambient temperature (MFFT<25 °C) had a lower slump, compressive and tensile strength, and higher WA, chloride ion, and CO2 penetration due to the higher film formation rate of latexes on the non-hydrated cement particles and the decreased final hydration degree. Furthermore, it was indicated that chloride penetration, water adsorption, and tensile strength of LMCs containing latexes with high MFFT (MFFT>25 °C) decreased by 14 %, 10 and 20 % compared to the conventional concrete, respectively. Such a chloride penetration reduction is a great achievement. Accordingly, carboxylated alkaline ASLs with high MFFT can be a promising candidate for preparing the LMCs, which can be applied in reinforced concrete in corrosive conditions. 

Keywords

Main Subjects


1. C. Jones, P. Subanen, W. M. Hale, Investigating concrete deterioration due to calcium oxychloride formation, Constr. Build. Mater., 320(2022), 125600. 
2. K. A. Erk, W. Siriwatwechakul, M. Wyrzykowski, D. Snoeck, Recent progress in superabsorbent polymers for concrete, Cem. Concr. Res., 151 (2022), 106648. 
3. Á. Salesa, J.A. Pérez Benedicto, D. Colorado Aranguren, P.L. López-Julián, L.M. Esteban, L.J. Sanz Baldúz, J.L. Sáez Hostaled, J. Ramis, D. Olivares, Physical mechanical properties of multi–recycled concrete from precast concrete industry, J. Clean. Prod., 141(2017), 248-255.
4. H. Binici, O. Aksogan, Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate, J. Build. Eng., 19(2018), 109-121.
5. Y. Tian, Ch. Dong, X. Cheng, Y. Wan, G. Wang, K. Xiao, X. Li, The micro-solution electrochemical method to evaluate rebar corrosion in reinforced concrete structures, Constr. Build. Mater., 151(2017), 607-614.
6. K. Siamphukdee, F. Collins, R. Zou, Sensitivity Analysis of Corrosion Rate Prediction Models Utilized for Reinforced Concrete Affected by Chloride, J. Mater. Eng. Perform., 22(2013), 1530-1540.
7. Sh. Mundra, M. Criado, S.A. Bernal, J.L. Provis, Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes, Cem. Concr. Res., 100(2017), 385-397.
8. J. Xiao, X. Long, W. Qu, L. Li, H. Jiang, Z. Zhong, Influence of sulfuric acid corrosion on concrete stress-strain relationship under uniaxial compression, Measurement, 187(2022), 110318. 
9. S. Chinchón-Payá, C. Andrade, S. Chinchón, Indicator of carbonation front in concrete as a substitute to phenolphthalein, Cem. Concr. Res., 82(2016), 87-91.
10. W. Xu, Yu. Li, H. Li, K. Wang, C. Zhang, Y. Jiang, S. Qiang, Corrosion mechanism and damage characteristic of steel fiber concrete under the effect of stray current and salt solution, Constr. Build. Mater., 314(2022), 125618. 
11. R. Wang, P. Wang, Function of styrene-acrylic ester copolymer latex in cement mortar, Mater. Struct., 43(2010), 443-451.
12. M. Pei, W. Kim, W. Hyung, A.J. Ango, Y. Soh, Effects of emulsifiers on properties of poly (styrene-butyl acrylate) latex-modified mortars, Cem. Concr. Res., 32(2002), 837-841. 
13. M. L. Varghese, R. J. Babu, Effect of nano-silica on the physical, mechanical and thermal properties of the natural rubber latex modified concrete, Indian J. Eng. Mater. Sci., 27 (2020), 1-14.
14. B.J. Lee, Y.Y. Kim, Durability of latex modified concrete mixed with a shrinkage reducing agent for bridge deck pavement, Int. J. Concr. Struct. Mater., 12(2018), 1-9.
15. B. Liu, J. Shi, M. Sun, Z. He, H. Xu, J. Tan, Mechanical and permeability properties of polymer-modified concrete using hydrophobic agent, J. Build. Eng., 31(2020), 101337. 
16. S. Abdollahi Baghban, M. Khorasani, G. Mir Mohamad Sadeghi, Soundproofing performance of flexible polyurethane foams as a fractal object, J. Polym. Res., 27(2020), 1-12.
17. L. K. Aggarwal, P. C. Thapliyal, S. R. Karade, Properties of polymer-modified mortars using epoxy and acrylic emulsions, Constr. Build. Mater., 21(2007), 379-383.
18. M. Nodehi, S. E. Nodehi, Ultra high-performance concrete (UHPC): reactive powder concrete, slurry infiltrated fiber concrete and superabsorbent polymer concrete, Innov. Infrastruct. Solut., 7(2022), 39.
19. S. Almeida AEF de, E.P. Sichieri, Experimental study on polymer-modified mortars with silica fume applied to fix porcelain tile, J. Build. Environ., 42(2007), 2645-2650.  
20. S. J. Kwon, M. Q. Feng, S. S. Park, Characterization of electromagnetic properties for durability performance and saturation in hardened cement mortar, J. NDT E Int., 43(2010), 86-95.  
21. S. Abdollahi Baghban, M. Ebrahimi, S. Bagheri-Khoulenjan, M. Khorasani, A highly efficient microwave-assisted synthesis of an LED-curable methacrylated gelatin for bio applications, RSC Adv., 11(2021), 14996-15009. 
22. S. Abdollahi Baghban, M. Ebrahimi, M. Khorasani, S. Bagheri-Khoulenjan, Self-stratifying behavior of a novel light-curable coating with gradient hydrophobic properties: Computational and experimental study, Prog. Org. Coat., 159(2021), 106435. 
23. S. Abdollahi Baghban, M. Ebrahimi, M. Khorasani, S. Bagheri-Khoulenjan, Design of different self-stratifying patterns in a VOC-free light-curable coating containing bio-renewable materials: Study on formulation and processing conditions, Prog. Org. Coat., 161(2021), 106519. 
24. J. M. Gao, C. X. Qian, B. Wang, K. Morino, Experimental study on properties of polymer-modified cement mortars with silica fume, Cem. Concr. Res., 32(2002), 41-45.
25. M. Joo, Y. Ohama, K. S. Yeon, Strength properties of autoclaved and combined wet/dry-cured SBR-modified concretes using ground granulated blast-furnace slag, Cem. Concr. Res., 56(2004), 513-521.
26. Z. Bahranifard, F.Farshchi Tabrizi, A.R. Vosoughi, An investigation on the effect of styrene-butyl acrylate copolymer latex to improve the properties of polymer modified concrete, Constr. Build. Mater., 205(2019, 175-185.
27. V. Divry, A. Gromer, M. Nassar, C. Lambour, D. Collin, Y. Holl, Drying mechanisms in plasticized latex films: role of horizontal drying fronts, J. Phys. Chem. B, 120(2016), 6791-6802.
28. L. Tang, L. O. Nilsson, Rapid determination of the chloride diffusivity in concrete by applying an eElectric field, ACI Mater. J., 89(1992), 49-53.
29. J. A. González, C. Andrade, C. Alonso, S. Feliu, Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement, Cem. Concr. Res., 25(1995), 257-264.
30. M. Zailan Suleiman, R. Talib, M. Ramli,  Durability and flexibility characteristics of latex modified ferrocement in structural development applications, J. Eng. Des. Technol., 11(2013), 59-70. 
31. N. Dave, V. Sahu, A.K. Misra, Development of geopolymer cement concrete for highway infrastructure applications, J. Eng. Des. Technol., 18(2020), 1321-1333. 
32. L. C. Page, N. R. Short, A. EI. Tarras, Diffusion of chloride in hardened cement pastes, Cem. Concr. Res., 11(1981), 395-406.
33. J. Wei, X.X. Fu, J.H. Dong, W. Ke, Corrosion evolution of reinforcing steel in concrete under dry/wet cyclic conditions contaminated with chloride, J. Mater. Sci. Technol., 28(2012), 905-912.
34. A. Beglarigale, H. Yazıcı, Electrochemical corrosion monitoring of steel fiber embedded in cement-based composites, Cem. Concr. Compos., 83(2017), 427-446. 
35. F. Moodi, A. Kashi, A.A. Ramezanian pour, M. Pourebrahimi, Investigation on mechanical and durability properties of polymer and latex-modified concretes, Construct. Build. Mater., 191(2018), 145-154. 
36. A. Shadmani, B. Tahmouresi, A. Saradar, E. Mohseni, Durability and microstructure properties of SBR-modified concrete containing recycled asphalt pavement, Constr. Build. Mater., 185(2018), 380-390.
37. K.W. Kim, C. Yu, J.W. Han, C. G. Park, Strength and durability of rapid set PVA fiber-reinforced LMC for pavement repair, Polym. Polym. Compos., 27(2019), 179-188.
38. M. Wang, R. Wang, H. Yao, S. Farhan, S. Zheng, Z. Wang, C. Du, H. Jiang, Research on the mechanism of polymer latex modified cement, Constr. Build. Mater., 111(2016), 710-718.
39. C. Miao, Q. Ran, J. Liu, Y. Mao, Y. Shang, J. Sha, New generation amphoteric comb-like copolymer superplasticizer and its properties, Polym. Polym. Compos., 19(2011), 1-8.
40. R. Wang, P. M. Wang, Function of styrene-acrylic ester copolymer latex in cement mortar, Mater. Struct., 43(2010), 443-451.