A Comparative Study on the Environmental Friendly Bleaching Processes of Poly(lactic acid) Substrate: Application of Ultraviolet/O3/H2O2 System

Document Type : Original Article

Author

Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran.

Abstract

Recently, there has been an increasing interest towards the finishing of textiles (fibers, yarns, fabrics and nonwovens) using eco-friendly technology, which can achieve a wide range of functional properties and environmental benefits. This study is related to a modern eco-friendly bleaching technology that relies on Ultraviolet/O3 radiation of poly(lactic acid) fabric through simple technique. The effects of Ultraviolet/O3 radiation along with the pretreatments with distilled water, hydrogen peroxide, and hydrogen peroxide/sodium silicate solutions on the bleaching of the poly(lactic acid) fabrics were examined using UV-Visible and reflectance spectral method and the results were compared with that of virgin untreated samples. Ultraviolet/O3 bleaching routes were screened to obtain desired whiteness index (WI), tint factor (Tw), lightness/darkness (L*), redness/greenness (a*), yellowness/ blueness (b*), chroma (c*) and hue (h˚) of the bleached poly(lactic acid) fabrics. The optimal properties of the bleached poly(lactic acid) knitted fabric could be obtained at Ultraviolet/O3 irradiation for 80 min on the fabrics which pre-impregnated in a hydrogen peroxide solution with a wet pick up of 70 %, pressure of 1.1 bar and speed of 2 m/min. (Ultraviolet/O3/H2O2 bleaching system). The Ultraviolet/O3/H2O2 bleached fabric showed the best colorimetric properties (WI: 87.7, : -0.1, L*:94.227, a*:-0.106, b*:0.294, c*:0.2512, h˚: 98.6551). Moreover, the reflectance of this sample has increased significantly in the range of 400-450 nm which leads to a glossy withe shade on the fibers. The SEM images presented that after Ultraviolet/O3/H2O2 bleaching process, some fractures with nano scale size (about 130 nm) are formed on the poly(lactic acid) fabric surface. The ATR-IR spectrum of Ultraviolet/O3/H2O2 bleached poly(lactic acid) fibers displays more intense C–C–O absorption bands (1161 cm-1). 

Keywords

Main Subjects


  1. Cesar da Silva, G. Cardoso de Oliveira Neto, J.M. Ferreira Correia, H.N. Pujol Tucci, Evaluation of economic, environmental and operational performance of the adoption of cleaner production: Survey in large textile industries, J. Clean. Prod., 278(2021), 123855-12372.
  2. K. Roy Choudhury, Green chemistry and the textile industry, Text. Progress., 45(2013) 3-143.
  3. A. Sheldon, M. Norton, Green chemistry and the plastic pollution challenge: towards a circular economy, Green Chem., 22(2020), 6310-6322.
  4. Madhav, A. Ahamad, P. Singh, P.K. Mishra, A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods, J. Environ. Qual., 27(2018), 31-41.
  5. Gopalakrishnan, V. Punitha, D. Saravanan, Water conservation in textile wet processing, In: Water in Textiles and Fashion(S.S. Muthu), Woodhead Publishing, Sawston, USA, 8(2019), 135-153.
  6. Managi, R. Lindner, C.C. Stevens, Technology policy for the sustainable development goals: From the global to the local level, Technol. Forecast. Soc. Change., 162(2021), 120410-120414.
  7. B. Moore, L.W. Ausley, Systems thinking and green chemistry in the textile industry: concepts, technologies and benefits, J. Clean. Prod., 12(2004), 585-601.
  8. Singh, A. Kaur, A. K. Patra, R. Mahajan, A sustainable and green process for scouring of cotton fabrics using xylano-pectinolytic synergism: switching from noxious chemicals to eco-friendly catalysts, 3 Biotech., 8(2018), 184-193.
  9. Kaur, L. M. Varghese, B. Battan, A.K. Patra, R.P. Mandhan, R. Mahajan, Bio-degumming of banana fibers using eco-friendly crude xylano-pectinolytic enzymes, Prep. Biochem. Biotech., 50(2020), 521-528.
  10. Chen, Q. Wang, Z. Hua, G. Du, Research and application of biotechnology in textile industries in China, Enzyme Microb. Technol., 40(2007), 1651-1655.
  11. Singh, L.M. Varghese, B. Battan, A.K. Patra, R.P. Mandhan, R. Mahajan, Eco-friendly scouring of ramie fibers using crude xylano-pectinolytic enzymes for textile purpose, Environ. Sci. Pollut. Res., 27(2020), 6701-6710.
  12. Hosseinnezhad, K. Gharanjig, R. Jafari, H. Imani, Green dyeing of woolen yarns with weld and madder natural dyes in the presences of biomordant, Prog. Color Colorants Coat., 14(2021), 35-45.
  13. Dave, L. Ledwani, S.K. Nema, Nonthermal plasma: A promising green technology to improve environmental performance of textile industries, in: The Impact and Prospects of Green Chemistry for Textile Technology(I. Shahid, B.S. Butola), Woodhead Publishing, Sawston, USA, (2019), 199-249.
  14. Hosseinnezhad, K. Gharanjig, S. Belbasi, S.H. Seied Saadati, Green dyeing of Silk Fabrics in the Presence of Pomegranate Extract as Natural mordant, Prog. Color Colorants Coat., 10(2017), 129-133.
  15. Hussain, A. Wahab, A critical review of the current water conservation practices in textile wet processing, J. Clean. Prod., 198(2018), 806-819.
  16. Shahid ul, B.S. Butola, A. Kumar, Green chemistry based in-situ synthesis of silver nanoparticles for multifunctional finishing of chitosan polysaccharide modified cellulosic textile substrate, Inter. J. Biolog. Macromol., 152(2020), 1135-1145.
  17. Wang, P. Tang, C. Zhao, Z. Zhang, G. Sun, An environmentally friendly bleaching process for cotton fabrics: mechanism and application of UV/H2O2 system, Cellul., 27(2020), 1071-1083.
  18. Yousef, M. Tatariants, M. Tichonovas, L. Kliucininkas, S.-I. Lukošiūtė, L. Yan, Sustainable green technology for recovery of cotton fibers and polyester from textile waste, J. Clean. Prod., 254(2020), 120078-120090.
  19. F. Nascimento, A. O. d. Silva, R. P. Weber, S. N. Monteiro, Influence of UV radiation and moisten associated with natural weathering on the ballistic performance of aramid fabric armor, J. Mater. Res. Technol., 9(2020), 10334-10345.
  20. Ben Hmida, N. Ladhari, Study of parameters affecting dry and wet ozone bleaching of denim fabric, Oz: Sci. Eng., 38(2016), 175-180.
  21. Rayung, N. A. Ibrahim, N. Zainuddin, W. Z. Saad, N. I. Razak, B. W. Chieng, The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites, Inter. J. Molecul. Sci., 15 2014), 14728-14742.
  22. Wang, Y. Zhao, Optimization of bleaching process for cellulose extraction from apple and kale pomace and evaluation of their potentials as film forming materials, Carbohydr. Polym., 253(2021) 117225.
  23. Golkar Taft, S. Jafarnia, E. Tabatabee Ghomshe, N. Chiniforush, L. Ranjbar Omrani, Effect of conventional in-office bleaching and laser assisted bleaching at two different wavelengths on Color stability of glass-Ionomers, J. Islam. Dent. Assoc. Iran., 29(2017), 7-14.
  24. Xia, L. L. Lu, Y. X. Liang, Preparation and characterization of poly(lactic acid) micro- and nanofibers fabricated by centrifugal spinning, Fiber. Polym., 21(2020), 1422-1429.
  25. S. Fattahi, A. khoddami, O. Avinc, Sustainable, renewable, and biodegradable poly(lactic acid) fibers and their latest developments in the last decade, sustainability in the textile and apparel industries, In: Sustainability in the textile and apparel industries (S. S. Muthu, M. A. Gardetti), Springer International Publishing, Switzerland, 2020, 8.
  26. S. Fattahi, Quantitative analyze of fourier transform Infrared spectroscopy (FTIR) of Poly (Lactic Acid) after UV/Ozone Irradiation, J. Text. Sci. Technol., 8(2019), 47-55.
  27. S. Fattahi, A. Khoddami, J. Rahmatinejad, Nanoscale roughness on the surface of polyester fibers through ultraviolet/ozone treatment, Iran. J. Polym. Sci. Technol., 32(2020), 457-473.
  28. Fattahi, H. Izadan, A. Khoddami, Investigation into the effect of UV/Ozone irradiation on dyeing behaviour of poly(lactic acid) and poly(ethylene terephthalate) substrates, Prog. Color Colorants Coat., 5(2012), 15-22
  29. S. Fattahi, A. Khoddami, H. Izadan, Review on production, properties, and applications of poly(lactic acid) fibers, J. Text. Sci. Technol, 14(2015), 11-17.
  30. Jacucci, L. Schertel, Y. Zhang, H. Yang, S. Vignolini, Light management with natural materials: from whiteness to transparency, Adv. Mater., 23(2020), 2001215.
  31. Fattahi, H. Izadan, A. Khoddami, Deep dyeing of poly(lactic acid) and poly(ethylene terephthalate) fabrics using UV/Ozone irradiation, in 4th International color and coatings congress (ICCC), Iran, 2011.
  32. I. Razak, N. A. Ibrahim, N. Zainuddin, M. Rayung, W.Z. Saad, The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(Lactic Acid) composites, Molecul., 19(2014).
  33. Špička, Ž. Zupin, J. Kovač, P.E. Forte Tavčer, Enzymatic scouring and low-temperature bleaching of fabrics constructed from cotton, regenerated bamboo, poly(lactic acid), and soy protein fibers, Fiber. Polym., 16(2015), 1723-1733.
  34. Battegazzore, T. Abt, M.L. Maspoch, A. Frache, Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications, Compos: B. Eng., 163(2019), 761-768.
  35. Phillips, J. Suesat, M. Wilding, D. Farrington, S. Sandukas, D. Sawyer, J. Bone, S. Dervan, Influence of different preparation and dyeing processes on the physical strength of the Ingeo fibre component in an Ingeo fibre/cotton blend. Part 2; Bleaching followed by dyeing with disperse and reactive dyes, Color. Technol., 120(2004), 41-45.
  36. Sadeghi-Kiakhani, S. Safapour, F. Sabzi, A.R. Tehrani-Bagha, Effect of ultra violet (UV) irradiation as an environmentally friendly pre-treatment on dyeing characteristic and colorimetric analysis of wool, Fiber. Polym., 21(2020), 179-187.
  37. Yang, S. Kim, W.Y. Kim, Effect of ozone treatment on ferroelectric polymer film, Mol. Cryst. Liq. Cryst., 704(2020), 119-124.
  38. W. Gooch, Whiteness Index, In: Encyclopedic Dictionary of Polymers, Springer, New York, US, 2011, 811-811.
  39. M. Mahdi, F. Tuj-Zohra, S. Ahmed, Dyeing of shoe upper leather with extracted dye from acacia nilotica plant bark-An eco-friendly initiative, Prog. Color Colorants Coat., 14(2020), 241-258.
  40. Jafari, M. Shahmohammadi, Evaluation of performance of uchida whiteness formula in CIE modified tinting region, J. Color Sci. Technol., 11(2017), 23-34.
  41. Jafari, The dependency of colorimetric characteristics of black fabrics to the whiteness attribute of substrate, Prog. Color Colorant Coat., 11(2018), 113-122.
  42. Safi, N. Khalili, Effect of measurement geometry on the colorimetry of glossy white samples, J. Color Sci. Technol., 14(2020), 237-246.
  43. Safi, N. Khalili, A.M. Arabi, Effect of various opacifiers on color parameters and gloss of glazed tiles, J. Color Sci. Technol., 5(2011), 253-261.
  44. Jafari, S.H. Amirshahi, Spectral reconstruction of blacks and whites by using the statistical colorants, Prog. Color Colorants Coat., 8(2015), 135-144.
  45. İ. Bahtiyari, H. Benli, Ozone bleaching of cotton fabrics with the aid of ultrasonic humidifier, Cellul., 23(2016), 2715-2725.
  46. Benli, M. İ. Bahtiyari, Combination of ozone and ultrasound in pretreatment of cotton fabrics prior to natural dyeing, J. Clean. Prod., 89(2015), 116-124.
  47. Jafari, A Review on Blackness, J. stud. Color World., 4(2014), 21-32.
  48. Jafari, Achromatics: Definitions, Concepts and Indices (Part I: Whiteness), J. stud. Color World., 4(2014), 49-56.
  49. Taheri, M. Safi, R. Jafari, A review on the application of optical brightener agents in textile industry, J. Stud. Color World., 9(2019), 65-78.
  50. S. Fattahi, Quantitative analyze of fourier transform infrared spectroscopy (FTIR) of poly (lactic acid) after UV/Ozone irradiation, J. Text. Sci. Technol., 8(2019), 47-55.
  51. S. Fattahi, S. A. mousavi shoushtari, An introduction to UV/Ozone treatment and its applications in the surface engineering of polymeric fibers and films, J. Stud. Color World., 10(2020), 65-76.
  52. Hetemi, J. Pinson, Surface functionalisation of polymers, Chem. Soc. Rev., 46(2017) 5701-5713.
  53. Prasetyaningrum, W. Widayat, B. Jos, Y. Dharmawan, R. Ratnawati, UV irradiation and ozone treatment of κ-carrageenan: kinetics and products characteristics, Bull. Chem. React. Eng. Catal., 15(2020), 319-330.
  54. Najafi, J. Y. Kim, S.-H. Han, K. Shin, UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion, Colloids Surf :A Physicochem. Eng. Asp., 284-285(2006), 373-378.
  55. V. Rekhate, J. K. Srivastava, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review, Chem. Eng. J. Adv., 3(2020), 100031.
  56. Pan, Y. Wu, H.A. Hsain, R. Su, C. Cazorla, D. Chu, Synergetic modulation of the electronic structure and hydrophilicity of nickel–iron hydroxide for efficient oxygen evolution by UV/ozone treatment, J. Mater. Chem: A, 8(2020), 13437-13442.
  57. Muhammad Nur Amir, Y. Ahmad Nor, N. Samsudin, A. Ma’an Fahmi Rashid, Y. Tshai Kim, Surface functionalization of mesoporous hollow carbon nanoparticles using UV/Oozne treatment, Biolog. Nat. Resour. Eng. J., 3(2020), 35-45.
  58. Xu, J. Jiang, L. Han, X. Feng, Highly efficient UV-Ozone treatment for IAZO active layer to facilitate the low temperature fabrication of high performance thin film transistors, Ceram. Int., 46(2020), 17295-17299.
  59. Li, J. K. Kim, M. Lung Sham, Conductive graphite nanoplatelet/epoxy nanocomposites: Effects of exfoliation and UV/ozone treatment of graphite, Scr. Mater., 53(2005), 235-240.
  60. Qin, Z. Lin, H. Dong, X. Yuan, Z. Qiang, S. Liu, D. Xia, Kinetic and mechanistic insights into the abatement of clofibric acid by integrated UV/ozone/peroxydisulfate process: A modeling and theoretical study, Water Res., 186(2020), 116336.
  61. Jung, D.H. Kim, J. Kim, S. Ko, J.W. Choi, K.C. Kim, S.-G. Lee, M.-J. Lee, Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells, J. Mater. Sci. Technol., 59(2020), 195-202.
  62. Fattahi, H. Izadan, A. Khodami, Investigation into the effect of UV/Ozone irradiation on the dyeing ‎behaviour of poly(lactic acid) and poly(ethylene terephthalate) ‎substrates, Prog. Color Colorants Coat., 5(2012), 15-22.
  63. J. Kang, H. Chung, M.-S. Kim, W. Kim, Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors, Appl. Surf. Sci., 355(2015), 160-165.
  64. Urata, B. Masheder, D.F. Cheng, A. Hozumi, How to reduce resistance to movement of alkane liquid drops across tilted surfaces without relying on surface roughening and perfluorination, Langmuir., 28(2012), 17681-17689.
  65. Liu, L. He, L. Wang, Y. Man, L. Huang, Z. Xu, D. Ge, J. Li, C. Liu, L. Wang, Significant enhancement of the Adhesion between metal films and polymer substrates by UV–Ozone surface modification in Nanoscale, ACS Appl. Mater. Interf., 8(2016), 30576-30582.
  66. Periyasamy, D. Gupta, M.L. Gulrajani, Nanoscale surface roughening of mulberry silk by monochromatic VUV excimer lamp, J. Appl. Polym. Sci., 103 (2007), 4102-4106.
  67. Fattahi, A. Khodami, O. Avinc, Nano-structure roughening on poly(lactic acid)PLA substrates: scanning electron microscopy (SEM) surface morphology characterization, J. Nanostruct., 10(2020), 206-216.
  68. M. Kim, J. Jang, Surface modification of meta-aramid films by UV/ozone irradiation, Fiber. Polym., 11(2010), 677-682.
  69. Dudem, L.K. Bharat, J.W. Leem, D.H. Kim, J.S. Yu, Hierarchical Ag/TiO2/Si forest-like nano/micro-architectures as antireflective, plasmonic photocatalytic, and self-cleaning coatings, ACS Sustain. Chem. Eng., 6(2018), 1580-1591.
  70. J. Jang, Y. Jeong, Nano roughening of PET and PTT fabrics via continuous UV/O3 irradiation, Dyes Pigm., 69(2006), 137-143.
  71. H. Koo, J. Jang, Surface modification of poly(lactic acid) by UV/Ozone irradiation, Fiber. Polym., 9(2008), 674-678.
  72. D. W. Yun, J. Jang, Surface modification of ultra high molecular weight polyethylene films by UV/ozone Irradiation, Text. Color. Finish., 23(2011), 76-82.