Photovoltaic Performance of Photoelectric Dye Sensitized Solar Cell Using Silver Nitrate Doped Titanium Oxide (AgNO3-TiO2) Nanoparticles as Photoanode Electrode

Document Type : Original Article

Authors

1 Department of Physics, Southern Delta University, P.O. Box: 2700, Ozoro, Nigeria

2 Department of Physics, Delta State University, P.O. Box: 38733, Abraka, Nigeria

3 Department of Chemistry, Southern Delta University, P.O. Box: 2700, Ozoro, Nigeria

Abstract

In this research, we focused on designing electrode materials that increase the light-harvesting efficiency of photoanodes. Our experimental report presents a new, economical method for producing high-surface-area transition-metal (TM)- doped TiO2 nanocrystals (NCs) for DSSCs. A Silver nitrate (AgNO3)- doped titanium oxide (AgNO3-TiO2) was successfully synthesized using the Doctor Blade method and effectively utilized as a photoanode in the fabrication of a dye-sensitized solar cell (DSSC) to study the effect of the dopant on the dye. The solvent method was used to extract the chlorophyll pigment. The absorption study of the sensitized photoanode was characterized using a UV-Vis spectrometer. The DSSC was assembled and tested for photoelectric properties using a solar simulator. The result revealed a photoelectric conversion efficiency PCE (η) of 0.16 %; Voc of 0.452 V, Isc of 0.692 mA/cm2, Vmax of 0.324 V, Imax of 0.501 mA/cm2, Pmax of 0.162 mW/cm2, and FF of 0.52 were obtained. The coated FTO glass with a TiO2 metal oxide surface, doped with silver at 0.2 molar concentration, has been shown to provide more surface area for dye adsorption and to extend visible light absorption.

Keywords

Main Subjects


  1. Ezeh IM, Enaroseha OOE, Agbajor GK, Achuba FI. Effect of titanium oxide (TiO2) on ntural dyes for the fabrication of dye-sensitized solar cells. Eng Proc. 2024;63:25.https://doi.org/10.3390/engproc2024063025.
  2. Odia OB, Enaroseha OO, Robert OO, Ojegu EO, Ikhioya IM, Ekpekpo A, Osiele OM. Fabrication of dye-sensitized solar cells using nitrogen doped carbon quantum dots and organic dye extracted from purple cabbage. Int J Adv Sci Technol. 2024;9(2):16-27.https:// bwjournal.org/index.php/bsjournal/article/view/1747.
  3. Osolobri BU, Enaroseha OOE, Omoyibo SE. Per-formance evaluation of dye-sensitized solar cell using bougainvillea flower extract. Int J Appl Phys Sci 2023; 9:42-47. https://dx.doi.org/10.20469/ijaps.9.500 05.
  4. Hosseinnezhad M, Moradian S, Gharanjig K. Synthensis and application of two organic dyes for dye sensitized solar cells. Prog Color Colorant Coat. 2013;6(2):109-117. https://doi.org/10.30509/PCCC. 2013.75808
  5. Etula J. Comparison of three Finnish berries as sensitizers in a dye sensitized solar cell. Eur J Young Sci Eng. 2012;1: 77-84 .
  6. O’Regan B, Gratzel M. A low cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature. 1991;353:737-740. https://doi.org/10.1038/35 3737a0.
  7. Mahmood A, Hussain Tahir M, Irfan V, Al-Sehemi V, Al-Assiri V. Heterocyclic azo dyes for dye sensitized solar cells: A quantum chemical study. Comput Theor Chem. 2015;1066:94-99. https://doi. org/10.1016/j. comptc.2015.05.020.
  8. Kumara NTRN, Ekanayake P, Lim A, Liew LYC, Iskandar M, Ming LC, Senadeera GKR. Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J Alloys Compd. 2013; 581:186-191. https://doi.org/10.1016/j.jallcom.2013.07. 039.
  9. Osolobri BU, Enaroseha OOE, Anho LO. Fabrication of dye-sensitised solar cell using dry Ixora extract as sensitizer. Mater Res Innov. 2025;29(3):135-142. https://doi.org/10.1080/14328917.2024.2389355.
  10. Amaghionyeodiwe CA, Obi AI, Nwankwojike BN, Alu NO, Odili EP. Optical characteristics and bandgap analysis of Canarium Schweinfurthii, Telfaira Occi-dentalis and Curcuma Longa extract as natural sensitizers for the production of dye-sensitized solar cells. Niger Agric J. 2019;50(2):205-212. https://www. ajol.info/index.php/naj/article/view/196137/185156.
  11. Okunzuwa GI, Enaroseha OOE, Okunzuwa SO. Synthesis and characterization of Fe(III) chitosan nanoparticles n-benzaldehyde Schiff base for biomedical application. Chem Pap. 2024;78(5):3253-3260. https:// doi.org/10.1007/s11696-024-03309-5.
  12. Aigbe UO, Onyancha RB, Ukhurebor KE, Okundaye B, Aigbe E, Enaroseha OOE, Obodo K, Osibote OA, El Nemr A, Noto LL, Atagana HI. Utility of magnetic nanomaterials for theranostic nanomedicine. In: Magnetic nanomaterials: synthesis, characterization and applications. Aigbe U.O., Onyancha R.B., Ukhurebor KE, (eds.), Magnetic Nanomaterials. Engr Mater. 2023; Chapter 3:47-86. https://doi.org/10.1007/978-3-031-36088-6_3.
  13. Hoerner LJ. Photosynthetic solar cells using chlorophyll and the applications towards energy sustainability. USFSP Honors Program Theses (Under-graduate). 2013;136. http://digital.usfsp.edu/honorstheses/136.
  14. Supriyanto E, Kartikasari HA, Alviati N, Wiranto G. Simulation of dye -sensitized solar cells performance for various local natural dye photosensitizers. IOP Conf Ser Mater Sci Eng. 2019; 515 (201):012048. https://doi.org/10.1088/1757-899X/515/1/012048.
  15. Sharma K, Sharma V, Sharma SS. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res Lett. 2018;13:381. https://doi.org/ 10.1186/s11671-018-2760-6.
  16. Ojegu E, Enaroseha OOE. Optical properties of the anatase phase of titanium dioxide thin films prepared by electrostatic spray deposition. Nig J Sci Environ. 2020;18:120-124.
  17. Wante HP, Yap SL, Aidan J, Alkasim A. Fabrication of dye-sensitized solar cell using flexible non- conductive polyetherimide (PEI) polymer substrate. J Mater Environ Sci. 2020; 11(10):1744-1753.
  18. Enaroseha OOE, Ifayefunmi OS, Oyebola OO. Rate equation analysis of the 2.9 μm Holmium-Doped Potassium Lead Bromide (Ho:KPb2Br5) transition for diode laser application. J. Nig. Ass. Math. Phys. 2016; 37: 301-306. https://doi.org/10.31219/osf.io/6pyur.
  19. Akila Y, Muthukumarasamy N, Velauthapillai D. Chapter 5-TiO2-based dye-sensitized solar cells. In: Thomas S, Sakho EHM, Kalarikkal N, Oluwafemi SO, Wu J. (eds.) Nanomaterials for Solar Cell Applications: Elsevier; 2019;127-144. https://doi. org/10.1016/B978-0-12-813337-8.00005-9.
  20. Ramanathan R, Zinigrad M, Kasinathan D, Poobalan RK. Zinc Stannate (Zn2SnO4)-based hybrid composite photoanode for dye-sensitized solar cell application. ACS Appl Energy Mater. 2022; 5(9):11506-11516.  https://doi.org/10.1021/acsaem.2c01981.
  21. Kumar Y, Chhalodia T, Bedi PKG, Meena PL. Photoanode modified with nanostructures for efficiency enhancement in DSSC: a review. Carbon Lett. 2023;33 (1):35-58. https://doi.org/10.1007/s42823-022-00422-x
  22. Malumi SO, Malumi T, Osiele MO, Ekpekpo A, Ikhioya IL. Enhance and performance evolution of silver-doped titanium dioxide dye-sensitized solar cells using different dyes. J Eng Ind Res. 2023;4(4): 189-200.https://doi.org/10.48309/jeires.2023.4.1.
  23. Malumi SO, Osiele MO, Enaroseha OOE, Daniel-Umeri R, Chukwu JO. Performance evaluation and characterization of fabricated silver nitrate doped DSSC sensitized with dye extracted from Corchorus olitorius L. Nig J Sci Environ. 2024;22(3):59-73. https://doi. org/10.61448/njse223245.
  24. Aigbe UO, Ukhurebor KE, Onyancha RB, Okundaye B, Aigbe E, Obodo K, Enaroseha OOE, Noto LL, Osibote AO, Atagana HI. Activated biosorbents for the removal of metals from aqueous solutions., Ukhurebor KE, Aigbe, UO., Onyancha R.B (eds.), Adsorption applications for environmental sus-tainability, 2023; Chapter 3:3.1-3.27. https://doi.org/ 10.1088/978-0-7503-5598-8ch3
  25. Okunzuwa IG, Enaroseha OOE, Okunzuwa SI, Omajale SO, Oyibo O. Preparation and charac-terization of chitosan furfural schiff base in the removal of Aqueous 2,4-Dinitrophenol. Int J Appl Phys Sci. 2024; 10:15-21. https://dx.doi.org/10.20469/ ijaps.10.50002.
  26. Mahalingam S, Abdullah H. Electron transport study of indium oxide as photoanode in DSSCs: A review. Renew. Sustain. Energy Rev. 2016;63:245-55. https:// doi.org/10.1016/j.rser.2016.05.067.
  27. Shakeel AM, Pandey AK, Abd RN. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications A review. Renew. Sustain. Energy Rev. 2017; 77:89-108. https://doi.org/10.1016/ j.rser.2017.03.129.
  28. Amarsingh BK, Kalpana DA, Theerthagiri J, Madhavan J, Balu T, Rajasekaran TR. Tungsten doped titanium dioxide as a photoanode for dye sensitized solar cells. J Mater Sci Mater Electron. 2017; 28(4):3428-39. https://doi.org/10.1007/s10854-016-5940-0
  29. Ahamed S, Shekshavali T, Syed SR. Celosia argentea: A Review. Res J Pharmacol Pharmacodyn. 2018; 10(2): 83-86. https://doi.org/10.5958/2321-5836.2018.00015.0.
  30. Filip MS, Macocian EV, Toderaş AM, Cărăban A. Spectrophotometric measurements techniques forfer-mentation process (part one) base theory for UV-Vis spectrophotometric measurements. Internal Report. 2012;78:34.
  31. Enaroseha OOE, Apanapudor JS, Oyibo O, Oho MO. Understanding the theoretic study of alkali metal (Sodium, Na) properties from ab initio calculations. J. Phys. Conf. Ser. 2024; 2780:012030. https://doi. org/10.1088/1742-6596/2780/1/012030.
  32. Yousaf SA, Abass JM. Structural, morphological, and optical characterization of SnO2: F thin films prepared by chemical spray pyrolysis. Int Lett Chem Phys Astron. 2013;13(2):90-102. https://doi.org/10.18052/WWW. SCIPRESS.COM/ILCPA.18.90.
  33. Maurya IC, Gupta AK, Srivastava P, Bahadur L. Natural dye extracted from Saraca asoca flowers as sensitizer for TiO2 -based dye-sensitized solar cell. J. Sol. Energy Eng.2016;138(5):051006. https://doi.org/10. 1115/1.4034028
  34. Hossein BM. Performance of nano structured dye-sensitized solar cell-utilizing natural sensitizer operated with platinum and carbon coated counter electrode. Dig J Nanomater Biostruct. 2009;4(4):723-727 https://www. chalcogen.ro/723_Hossein.pdf.
  35. Kim JJ, Kang M, Kwak OK, Yoon Y, Min KS, Moo-Jung C. Fabrication and characterization of dye- sensitized solar cell for greenhouse application. Int J Photoenergy. 2014;1-7. https://dx.doi.org/10.1155/ 2014/ 376315.
  36. Bera S, Sengupta D, Roy S, Mukherjee k. Research into dye sensitized solar cells: a review highlighting progress in India. J Phys Energy. 2021;3(3):032013. https://doi. org/10.1088/2515-7655/abff6c.
  37. Senthil T, Muthukumarasamy N, Kang M. ZnO nanorods based dye sensitized solar cells sensitized using natural dyes extracted from Beetroot, Rose and Strawberry. Bull Korean Chem Soc. 2014;35(4): 1050-1056. http://dx.doi.org/10.5012/bkcs.2014.35.4. 1050.
  38. Kabir F, Bhuiyan MMH, Manir MS, Rahaman MS, Khan MA, Ikegami T. Development of dye sensitized solar cell based on combination of natural dyes extracted from Mabalar spinach and red spinach. Result Phys. 2019;19:102474 https://doi.org/10.1016/j.rinp.2019.1024 74.
  39. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M. High efficient dye sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015; 88(1): 420-435. https://doi.org/ 10.1039/c5cc06759f.
  40. Sanusi A, Moreh AU, Hamza B, Sadiya U, Abdullahi Z, Wara MA, Kamaluddeen H, Kebbe MA, Monsurat UF. Optical characterization of Fluorine doped Tin Oxide (FTO) thin films deposited by spray pyrolysis technique and annealed under Nitrogen atmosphere. Int J Innov Appl Stud. 2014;9(2):947-955. https:// ijias.issr-journals.org/abstract.php?article=IJIAS-14-240-02.
  41. Jihuai W, Lan Z, Lin J, Huang M, Fan L, Luo G, Lin Y, Xie Y, Wei Y. Counter electrode in dye sensitized solar cells. Chem Soc Rev. 2017; 46(19): 5975-6023. https://doi.org/10.1039/C6CS00752J.
  42. Masud H, Kim K, Redox shuttle-based electrolytes for dye-sensitized solar cells: comprehensive guidance recent progress and future perspective. ACS Omega. 2023;8(7):6139-6163. https://doi.org/10.1021/acsome ga. 2c06843.
  43. Ammar AM, Abdel-Hafez GM, Mohamed HSH, Hassanien AS, Yousef MMK, Khalil ASG. Dye-sensitized solar cells (DSSCs) based on extracted natural dyes. J Nanomater. 2019;10(1):69-77. https://doi.org/10. 1155/2019/1867271.
  44. El-Ghamri HS, El-Agez TM, Taya SA, Abdel-Latif MS, Batniji AY. Dye-sensitized solar cells with natural dyes extracted from plant seeds. Mater Sci Pol. 2014; 32(4):547-554. https://doi.org/10.2478/s13536-014-0231 -z.
  45. Chang H, Wu HM, Chen TL, Huang KD, Jwo CS, Lo V. Dye sensitized solar cell using natural dyes extracted from spinach and ipomoea. J Alloys Compd. 2010;495 (2):606-610.https://doi.org/10.1016/j.jallcom.2009.10.057.