Investigation of the Distribution and Placement of Metal-Organic Frameworks in Polyvinyl Alcohol/Sodium Alginate Composites and Their Effects on Adsorption Properties for Dye Removal: A Comparison of Different Synthesis Methods

Document Type : Original Article

Authors

Department of Polymer Engineering, Faculty of Engineering, Golestan University, P.O. Box: 49138-15759, Gorgan, Iran

Abstract

In this work, we investigated the incorporation of metal-organic frameworks (MOFs) into polyvinyl alcohol (PVA) and sodium alginate (SA) composites, analyzing the integration of ZIF-8 into this matrix blend and the effect of its distribution and location on adsorption properties. The PVA/SA@ZIF-8 hydrogels were prepared using three synthesis methods: one-step in situ, two-step in situ, and direct mixing. Morphology, elemental distribution, and structural integrity of the composites were characterized by FESEM, EDS, FTIR, XRD, and DLS analyses. In terms of ZIF-8 integration, the two-step in-situ method yielded the most effective distribution and integration, resulting in superior adsorption capacity. We comprehensively evaluated the removal efficiency of basic violet dye under varied conditions, including hydrogel dosage, pH, temperature, initial dye concentration, and contact time. Results demonstrated that the two-step in-situ-synthesized hydrogels exhibited the best performance, achieving approximately 99 % dye removal at an optimal dosage of 20 mg, pH 12, and T = 60 °C. The maximum dye removal efficiency for this method was observed at the initial dye concentration of 5 mg/L, reaching about 69 %. Kinetic studies indicated a predominant chemisorption process (Pseudo-Second-Order R² ≈ 0.99), and thermodynamic evaluation confirmed a spontaneous (ΔG∘= −3.96 kJ/mol at T=298 K) and endothermic (ΔH∘ = +21.85 kJ/mol) adsorption. These results collectively demonstrate the great promise of engineered PVA/SA composites incorporating MOFs for use in environmental remediation and industrial processes, driving the next generation of material design for sustainability.

Keywords

Main Subjects


  1. Brusko V, Artur K, Aydar R, Dimiev AM. Unraveling the infrared spectrum of graphene oxide. Carbon. 2024; 229:119507-7. https://doi.org/10.1016/j.carbon. 2024.119507.
  2. Wang H, Pei X, Kalmutzki M, Yang J, Yaghi OM. Large cages of zeolitic imidazolate frameworks. Account Chem Res. 2022; 55(5):707-21. https://doi. org/10.1021/acs.accounts.1c00740.
  3. Kumar A, Sood A, Sung Soo Han. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydrate Polym. 2022; 277:118881-1. https://doi.org/10.1016/j.carbpol. 2021. 118881.
  4. Wang T, Lin J, Chen Z, Megharaj M, Naidu R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod. 2014; 83:413-9. https://doi.org/10.1016/j.jclepro.2014.07.006.
  5. Tran NH, Reinhard M, Gin KYH. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018; 133:182-207. https://doi.org/ 10.1016/j.watres.2017.12.029.
  6. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater. 2018; 30(37):1707365. https://doi.org/10.1002/adma. 201707365.
  7. Goudarzi S, Gharanjig K, Kazemian H, Ghasemi E, Imani H, Gharanjig H. Enhanced removal of cochineal dye from textile effluents using MIL 53(Al): optimi-zation, kinetics, and thermodynamic studies. Prog Color Colorant Coat. 2025;18(1):1-16. https://doi. org/10.30509/pccc.2024.167297.1289.
  8. Barakat A, Ennaji W, Krimissa S, Bouzaid M. Heavy metal contamination and ecological-health risk evaluation in peri-urban wastewater-irrigated soils of Beni-Mellal city (Morocco). Int J Environ Health Res. 2020;30(4):372-87. https://doi.org/10.1080/09603123. 2019.1595540.
  9. Shakir M, Azahari B, Yusup Y, Yhaya M, Salehabadi A, Ahmad MI. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite. J Adv Res Fluid Mech Therm Sci. 2024; 65(2):253-263.  
  10. Lee Y, Jang MS, Cho H, Kwon H, Kim S, Ahn W. ZIF 8: A comparison of synthesis methods. Chem Eng J. 2015;271:276-80. https://doi.org/10.1016/j.cej.2015. 02.094.
  11. Veghari Atigh F, Shaki H. Cost-effective removal of methylene blue dye from wastewater using polyacry-lamide/sodium carboxymethyl cellulose/ magnetic halloysite nanotube hydrogel. Int J Environ Sci Technol. 2025; 22:9849-76. https://doi.org/10.1007/s 13762-025-06461-x.
  12. Tristan JK, Slowinski IA, Dao B, Cortez VH, Gredig T. Zeta potential and size analysis of zeolitic imidazolate framework 8 nanocrystals prepared by surfactant-assisted synthesis. Langmuir. 2024;40:6138 -6148. https://doi.org/10.1021/acs.langmuir.3c03193.
  13. Shaki H. Removal of methylene blue and maxilon blue dyes using a polyvinyl alcohol/poly(acrylic acid co acrylamide) composite hydrogel from water. Pigm Resin Technol. 2023;52:521-31. https://doi.org/10. 1108/PRT-11-2021-0130.
  14. Sutar P, Rao Bakuru V, Yadav P, Laha S, Babu Kalidindi S, Kumar Maji T. Nanocomposite hydrogel of Pd@ZIF 8 and Laponite®: Size selective hydroge-nation catalyst under mild conditions. Chem. 2020;27: 3268-3272. https://doi.org/10.1002/chem.20 200 4345.
  15. Li Y, Wen J, Xue Z, Yin X, Yuan L, Yang C. Removal of Cr(VI) by polyaniline embedded polyvinyl alcohol/sodium alginate beads: Extension from water treatment to soil remediation. J Hazard Mater. 2022; 426:127809. https://doi.org/10.1016/j. jhazmat.2021.127809.
  16. Baigorria E, Cano LA, Sanchez LM, Alvarez VA, Ollier RP. Bentonite composite polyvinyl alcohol/ alginate hydrogel beads: Preparation, characterization and their use as arsenic removal devices. Environ Nanotechnol Monit Manag. 2020;14:100364. https://doi.org/10.1016/j.enmm.2020.100364.
  17. Jang J, Lee D. Enhanced adsorption of cesium on PVA alginate encapsulated Prussian blue graphene oxide hydrogel beads in a fixed bed column system. Bioresour Technol. 2016; 218:294-300. https://doi. org/10.1016/j.biortech.2016.06.100.
  18. Gwon K, Han I, Lee S, Kim Y, Lee D. Novel metal–organic framework based photocrosslinked hydrogel system for efficient antibacterial applications. ACS Appl Mater Interfaces. 2020; 12:20234-42. https://doi. org/10.1021/acsami.0c03187.
  19. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A. Metal–organic framework based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev. 2018; 47(7):2322-56. https://doi.org/10.1039/C7CS00543A.
  20. Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C. Shapeable fibrous aerogels of metal–organic frameworks templated with nanocellulose for rapid and large capacity adsorption. ACS Nano. 2018; 12 (5):4462-68. https://doi.org/10.1021/acsnano.8b00566.
  21. Ahmed I, Jhung SH. Composites of metal-organic frameworks: Preparation and application in adsorption. Mater Today. 2014;17(3):136-146. https://doi.org/10.1016/j.mattod.2014.03.002.
  22. Zhang G, Chen H, Yang G, Fu H. Preparation of in situ ZIF 9 grown on sodium alginate/polyvinyl alcohol hydrogels for enhancing Cu(II) adsorption from aqueous solutions. J Inorg Organomet Polym Mater. 2022; 32:4576-4588. https://doi.org/10.1007/s10904-022-02463-1.  
  23. Phu NAMM, Wi E, Jeong G, Kim H, Singha NR, Chang M. Highly efficient dye adsorption by hierarchical porous SA/PVA/ZIF 8 composite microgels prepared via microfluidics. Carbohydr Polym. 2025; 350:123016. https://doi.org/10.1016/j. carbpol.2024.123016.
  24. Ta DN, Nguyen HKD, Trinh BX, Le QT, Ta HN, Nguyen HT. Preparation of nano ZIF 8 in methanol with high yield. Can J Chem Eng. 2018; 96(7):1518-31. https://doi.org/10.1002/cjce.23155.
  25. Akhundzadeh Tezerjani A, Halladj R, Askari S. Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework 8 to tuning the crystal structure and properties. RSC Adv. 2021; 11:19914-23. https://doi.org/10.1039/D1RA02856A.
  26. Zhang X, Lin B, Zhao K, Wei J, Guo J, Cui W. A free standing calcium alginate/polyacrylamide hydro-gel nanofiltration membrane with high anti fouling performance: Preparation and characterization. Desa-lination. 2015;365:234-241. https://doi.org/10.1016/j. desal.2015.03.015.
  27. Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Rapid synthesis of zeolitic imidazolate framework 8 (ZIF 8) nanocrystals in an aqueous system. Chem Commun. 2011; 47(7):2071-2073. https://doi.org/10.1039/C0CC 05002D.
  28. Zhang X, Li Z, Zhang T, Chen J, Jib W, Wei Y. Fabrication of an efficient ZIF 8 alginate composite hydrogel material and its application to enhanced copper(II) adsorption from aqueous solutions. New J Chem. 2021;45:15876-86. https://doi.org/10.1039/ D1NJ03427H.
  29. Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Technol. 2006; 40(5):1724-30. https://doi.org/10.1021/es050512j.
  30. Senapati S, Giri J, Mallick L, Singha D, Bastia TK, Rath P, et al. Rapid adsorption of industrial cationic dye pollutant using base activated rice straw biochar: performance, isotherm, kinetic and thermodynamic evaluation. Discov Sustain. 2025; 46(6):1-24. https:// doi.org/10.1007/s43621-025-00835-4.
  31. Hadi A, Karimi Sabet J, Dastbaz A. Parametric study on the mixed solvent synthesis of ZIF 8 nano  and micro particles for CO adsorption: A response surface study. Front Chem Sci Eng. 2018; 12(4):713-22. https://doi.org/10.1007/s11705-018-1770-3.
  32. Hao C, Zhou D, Xu J, Hong S, Wei W, Zhao T. One pot synthesis of vancomycin encapsulated ZIF 8 nanoparticles as multivalent and photocatalytic anti-bacterial agents for selective killing of pathogenic gram positive bacteria. J Mater Sci. 2021;56(15): 9434-9444. https://doi.org/10.1007/s10853-021-05828 -y.
  33. Santhosh S, Jha CB, Singh C, Kumar R, Pandey NK, Varshney R, et al. Preparation and evaluation of physically cross linked hydrogel of tranexamic acid. AIP Conf Proc. 2023; 2800:020161. https://doi.org/ 10.1063/5.0163649.
  34. Wang P, Tan L, Yuan G, Feng S, Tang H, Wang G. ZIF 8 modified polyvinyl alcohol/chitosan composite aerogel for efficient removal of Congo red. J Solid State Chem. 2022; 316:123628. https://doi.org/10. 1016/j.jssc.2022.123628.
  35. Deng Y, Mao Q, Luo S, Xie X, Luo L. Adsorption based removal of Sb(III) from wastewater by graphene oxide modified zirconium based metal–organic framework composites. Adsorpt Sci Technol. 2022; 2:105321. https://doi.org/10.1155/2022/9222441.
  36. Wu FC, Tseng RL, Juang RS. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J. 2009; 153:1-8. https://doi.org/10.1016/j.cej.2009.04.042.