Enhanced Surface Modulation of CNT and CN-PS Nanocomposites via Plasma Treatment

Document Type : Original Article

Authors

1 Department of Chemistry, College of Science, Al-Nahrain University, P.O. Box: 64021, Jadriyah, Baghdad, Iraq

2 Department of Mechanical Engineering, College of Engineering, Al-Nahrain University, P.O.Box: 64040, Jadriyah, Baghdad, Iraq

3 Department of Physics, College of Science, Al-Nahrain University, P.O. Box: 64021, Jadriyah, Baghdad, Iraq

4 Medical Physics Department, College of Science, Al-Nahrain University, P.O. Box: 64021, Jadriyah, Baghdad, Iraq

5 Chemical and Petrochemical Research Center, Corporation of Research and Industrial Development, Ministry of Industry and Minerals, P.O. Box: 47182, Baghdad, Iraq

6 Institute of Laser for Postgraduate Studies, University of Baghdad, P.O. Box: 47134, Baghdad, Iraq

7 Department of Physics, College of Science, University of Baghdad, P.O. Box: 47131, Baghdad, Iraq

8 Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, P.O. Box: 100, Babylon, Iraq

Abstract

New spectrally nanocomposite films have been developed for high absorption performance. The polystyrene (PS) was dissolved in THF and blended with fixed concentrations of carbon nanotubes (CNT) and carbon nanofibers (CN) (5 wt. % CNT, 5 wt. % CN, and 2.5 wt. % CNT+CN) via the casting technique to produce nanocomposite films. Polymer nanocomposite films have been developed to create an economical coating that reinforces the poly (styrene) matrix. The coating exhibits high absorptivity; the optical properties were computed over a wavelength range of 250-1350 nm at 30 °C. The transmittance and reflectance were decreased, skin depth and optical density were increased, and the absorbance coefficient and dielectric constant were increased. The direct and indirect energy gap (Eg) of the films has decreased from 2.8 to 2.4 eV and from 3.4 to 2.9 eV after adding CNT with CN. The Urbach energy (Eu) has increased from 1.24 to 2.71 eV. The XRD test confirms that the films had amorphous structures. The SEM analysis was used to show the surface morphology of thin films. Consequently, the atomic force microscopy (AFM) measurements indicated an increase in surface roughness (SR) from 5.19 to 14.5 nm for the doped PS thin films, and the root mean square (RMS) roughness increased from 6.65 to 16.6 nm. These modified PS nanocomposite thin films find potential applications in various industries, including air transport components, light-emitting diodes, laser sensors, UV energy shielding, light-harvesting devices, memory devices, and light-conversion technologies. 

Keywords

Main Subjects


  1. Paul A, Grady B, Ford W. Polystyrene composites of single-walled carbon nanotubes-graft-polystyrene. Poly Inter. 2012; 61:1603-1610. https://doi.org/10. 1002/pi.4258.  
  2. Mittal V. Polymer nanotube nanocomposites: synthesis, properties, and applications. Wiley pub., 2024. https://doi.org/10.1002/9781118945964.   
  3. Liu Y, Wang G, Wu Y. Amphiphilicity and self-assembly behaviors of polystyrene-grafted multi-walled carbon nanotubes in selective solvents. Colloid Polym Sci. 2014; 292:185-96. https://doi.org/10.1007/ s00396-013-3066-y.
  4. Iijima S., Helical microtubules of graphitic carbon. Nature. 1991; 354:56-8. https://doi.org/10.1038/3540 56a0 
  5. Suhr J, Victor P, Ci L, Sreekala S, Zhang X, Nalamasu O. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat Nanotechnol. 2007; 2:417-421. https://doi.org/10.1038/nnano. 2007. 186 
  6. Chehata N, Ltaief A, Bkakri R, Bouazizi A, Beyou E. Conducting polymer-functionalized multi-walled carbon nanotubes nanocomposites: optical properties and morphological characteristics. Mater Lett. 2014; 121:227-230. https://doi.org/10.1016/j.matlet.2014.01. 162 
  7. Ismail RA, Almashhadani NJ, Sadik RH. Preparation and properties of polystyrene incorporated with gold and silver nanoparticles for optoelectronic appli-cations. Appl Nanosci. 2017;7:109-116. https://doi. org/10.1007/s13204-017-0550-6 
  8. Yang J, Zhang Z, Men X, Xu X. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nano-tubes. Appl Surf Sci. 2009; 255:9244-7. https://doi. org/10.1016/j.apsusc.2009.07.010 
  9. Al-Taa'y WA, Ibraheem H, Yousif E, Jelassi H. Studies on surface morphology and electrical con-ductivity of PS thin films in the presence of divalent complexes. Baghdad Sci J. 2019; 16:588-594. https://doi.org/10.21123/bsj.2019.16.3.0588 
  10. Mezan SO, Jabbar AH, Hamzah MQ, Tuama AN, Hasan NN, Roslan MS, Agam MA. Synthesis, characterization, and properties of polystyrene/SiO₂ nanocomposite via sol–gel process. AIP Conf Proc. 2019; 2151:020034-1–020034-7. https://doi.org/10. 1063/1.5124664 
  11. Doğuscü DK, Hekimoğlu G, Sari A. High internal phase emulsion templated-polystyrene/carbon nano-fiber/hexadecanol composites phase change materials for thermal management applications. J Energy Storage. 2021; 39:102674. https://doi.org/10.1016/j. est.2021.102674.
  12. Kumar MSS, Selvan CP, Santhanam K, Kadirvel A, Chandraprabu V, SampathKumar L, Effect of nano-materials on tribological and mechanical properties of polymer nanocomposite materials. Adv Mater Scien Eng. 2022;2165855:1-16. https://doi.org/10.1155/ 2022/ 2165855 
  13. Farag OF, Abdel-Fattah ES. Synthesis and charac-terization of PVA/plasma-functionalized MWCNTs nanocomposites films. J Polym Res. 2023; 30:183. https://doi.org/10.1007/s10965-023-03550-8. 
  14. Kumar D, Amika, Kumar D, Singh P, Chauhan AS, Kapoor S, Bansal SA. Polymer/carbon nanotube composites: A comprehensive review on fabrication techniques and their consequences. AIMS Mater Sci. 2025;12(4):813-844. https://doi.org/10.3934/matersci. 2025035.
  15. Morent R, De Geyter N, Leys C, Gengembre L, Payen E. Non-thermal plasma treatment of textiles. Surf Coat Technol. 2008;202(14):3427-3449. https:// doi.org/10.1016/j.surfcoat.2007.12.027.
  16. Friedrich J. Mechanisms of plasma polymerization reviewed from a chemical point of view. Plasma Process Polym. 2011; 8(9):783-802. https://doi.org/10. 1002/ppap.201100038.
  17. Abdulwahid AA, Alwan LH, Ahmed AA, Abed RN. Optical and physical properties for the nanocomposite poly(vinyl chloride) with affected of carbon nanotube and nano carbon. Prog Color Colorants Coat. 2023; 16(4):329-38. https://doi.org/10.30509/PCCC.2023. 167082.1198 
  18. Patel V, Joshi U, Joshi A, Matanda B K, Chauhan K, Oza A D, Nergis D P B, and Nergis D D B, Multi-Walled Carbon-Nanotube-Reinforced PMMA Nano-composites: An Experimental Study of Their Friction and Wear Properties. Polymers 2023; 15(13): 2785; https://doi.org/10.3390/polym15132785.
  19. Li J-W, He Y-L, Chen L-W, Luo X-Z, Cao D-X, Tan Y-C. Photocurable carbon nanotube/polymer nano-composite for the 3D printing of flexible capacitive pressure sensors. Polymers. 2023;15(24):4706. https://doi.org/10.3390/polym15244706.
  20. Kausar A, Ahmad I. Electrospinning processing of polymer/nanocarbon nanocomposite nanofibers: design, features, and technical compliances. J Compos Sci. 2023;7(7):290. https://doi.org/10.3390/jcs7070 290
  21. El-Naggar AM. Optical and dielectric features of PVC/ZnCo₂O₄/MWCNTs/TBAI polymers for opto-electronic and energy storage applications. Inorg Chem Commun. 2023; 152:111624. https://doi.org/10. 1016/j.inoche.2023.111624.
  22. Yang CC, Tsai JS, Chuang YC, Hsu YC. Enhancing the photoelectric properties of flexible carbon nanotube paper by plasma gradient modification and gradient illumination. Processes. 2024; 12(7):1449. https://doi.org/10.3390/pr12071449.
  23. Alkhursani, S.A., Aldaleeli, N., Elbasiony, A.M. et al. Simulation and characterization of Co3O4/carbon nanotube-filled PVC nanocomposites for medium-voltage cable applications. Polym. Bull. 81, 15841-15864 (2024). https://doi.org/10.1007/s00289-024-05435-2.
  24. Abdullah AM, Alwan LH, Ahmed AA, et al. Optical properties of polystyrene with carbon nanotube and carbon nano incorporated and surface morphology studies. Int Nano Lett. 2023; 13:165-76. https://doi. org/10.1007/s40089-023-00398-0.
  25. Liu T W, Zhao Z, Cao R, Liu Y Y, Jiang X, Reliability challenges of gate dielectric materials in transistors. Inform. Function. Mater. 2025; 2(1):62-92. https://doi.org/10.1002/ifm2.31.
  26. Abed RN, Yousif E, Abed ARN, Rashad AA, Hadawey A, Jawad AH. Optical properties of PVC composite modified during light exposure to give high absorption enhancement. J. Non-Crys. Solids 2021; 570:120946. https://doi.org/10.1016/j.jnoncrysol. 2021. 120946
  27. Abed RN, Abed ARN, Khamas FA, Abdallh M, Yousif E. High performance thermal coating comprising (CuO:NiO) nanocomposite/C spectrally selective to absorb solar energy. Prog Color Colorant Coat. 2020; 13:275-284. https://doi.org/10.30509/ PCCC.2020.81662
  28. Abed RN, Abdallh M, Rashad AA, Hadawey A, Yousif E. New coating synthesis comprising CuO:NiO/C to obtain highly selective surface for enhancing solar energy absorption. J Polym Bull. 2021;78:433-455. https://doi.org/10.1007/s00289-020-03115-5.
  29. Abed RN, Kadhom M, Ahmed DS, Hadawey A, Yousif E. Enhancing optical properties of modified PVC and Cr2O3 nanocomposite. Trans Electr Electron Mater. 2021; 22:317-327. https://doi.org/10.1007/ s42341-020-00242-8.  
  30. Urbach F. The long wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953; 92:1324. https://doi.org/10.1103/ PhysRev.92.1324.
  31. Abed RN, Yousif E, Abed ARN, Rashad AA. Synthesis thin films of poly(vinyl chloride) doped by aromatic organosilicon to absorb the incident light. Silicon. 2022;14:11829-11845. https://doi.org/10. 1007/s12633-022-01893-3.
  32. Abdullah OG, Saber DR. Optical absorption of poly(vinyl alcohol) films doped with nickel chloride. Appl Mech Mater. 2012; 110-116:177-82. https://doi. org/10.4028/www.scientific.net/AMM.110-116.177.
  33. Zhang Q, Liang W, Xiong L, Wang Y, Xu HA polymer nanocomposite with strong full-spectrum solar absorption and infrared emission for all-day thermal energy management and conversion. Adv Sci. 2024;11(8):e202308200. https://doi.org/10.1002/ advs. 202308200.
  34. Dolai S, Sarangi SN, Hussain S, Bhar R, Pal AK. Magnetic properties of nanocrystalline nickel incorporated CuO thin films. J Magn Magn Mater. 2019;479:59-66. https://doi.org/10.1016/j.jmmm.2019. 02. 005.
  35. Abdullah AM, Alwan LH, Ahmed AA, Abed RN. Physical study of PVA filled with carbon nanotube and nano carbon with roughness morphology. J Phys Chem Res. 2023; 11:747-760. https://doi.org/10. 22036/PCR.2022.362088.2195.
  36. Abed RN, Al-Sahib NK, Khalifa AJN. Energy gap demeanor for carbon doped with chrome nanoparticle to increase solar energy absorption. PCCC. 2020; 13: 143-54. https://doi.org/10.30509/PCCC.2020. 81613
  37. Al-Bataineh QM, Alsaad AM, Ahmad AA, Al-Sawalmih A. Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol–gel method versus ab initio calculations. J Electron Mater. 2019; 48:5028-38. https://doi.org/10.1007/s11664-019-07303-6.
  38. Pankove JI. Optical processes in semiconductors. New York: Dover Publications; 1975. p. 91.
  39. Ahmed A, Abed RN, Kadhom M, Hashim H, Akram E, Jawad A, et al. Modification of poly(vinyl chloride) thin films with organic compound and nanoparticles for solar energy applications. J Polym Res. 2023; 30:36. https://doi.org/10.1007/s10965-023-03654-1
  40. Abed RN, Yousif E, Abed ARN, Rashad AA. Synthesis of thin films of poly(vinyl chloride) doped by aromatic organosilicon to absorb the incident light. Silicon. 2022; 14:11829-45. https://doi.org/10.1007/ s12633-022-01893-3.
  41. Abed RN, Al-Mashhadani MH, Yousif E, Hashim H, Yusop RM, Bufaroosha M. Organosilane-doped PVC lattice thin film for optoelectronic applications. J Opt. 2023; https://doi.org/10.1007/s12596-023-01351-2.
  42. Fasasi A, Osagie E, Pelemo D, Obiajunwa E, Ajenifuja E, Ajao J, et al. Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Am J Mater Synth Process. 2018; 3(2): 12-22. https://doi.org/10.11648/j.ajmsp. 20180302. 12
  43. Zanatta AR. Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology. Sci Rep. 2019; 9:11225. https://doi.org/ 10.1038/s41598-019-47670-y.
  44. Alsaad AM, Al-Bataineh QM, Ahmad AA, Albataineh Z, Telfah A. Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik. 2020;211:164641. https://doi.org/10.1016/j.ijleo.2020. 164641.
  45. Abdullah AM, Alwan LH, Ahmed AA, Abed RN. Optical and physical properties for the nanocomposite poly(vinyl chloride) with affected of carbon nanotube and nano carbon. Prog Color Colorants Coat. 2023; 16:331-345. https://doi.org/10.30509/PCCC.2023.167 082.1198.
  46. Hassanien AS, Akl AA. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 2016; 89: 153-69. https://doi.org/10.1016/j.spmi.2015.10.044.   
  47. Abed ARN, Abed RN. Characterization effect of copper oxide and cobalt oxide nanocomposite on poly(vinyl chloride) doping process for solar energy applications. PCCC. 2022; 15:235-241. https://doi.org/ 10.30509/PCCC.2021.166858.1123
  48. Emir P, Kuru D. Boron nitride quantum dots/polyvinyl butyral nanocomposite films for the enhanced photoluminescence and UV shielding properties. J Appl Polym Sci. 2024; 141:55171. https://doi.org/10.1002/app.55171.
  49. Abed RN, Zainulabdeen K, Abdallh M, Yousif E, Rashad AA, Jawad AH. The optical properties behavior of modify poly(methyl methacrylate) nanocomposite thin films during solar energy absorption. J Non-Cryst Solids 2023;609:122257. https://doi.org/10.1016/j. jnoncrysol.2023.122257  
  50. Dadoosh RM, Alwan AF, Farhan SA, Jassim BE, Mahmood A, Al-Saadi LG, et al. Study of Physicochemical Properties of PVC Thin Films Affected by Carbon Nanotubes to Prevent Photo-degradation During UV Light Exposure. Prog Color Colorant Coat. 2024; 17:307-324. https://doi.org/ 10.30509/pccc.2024.167260.1275.   
  51. Abed RN, Rashad AA, Rahman MH, Basem A, Al-Ani A, Husain A, Jumaah NS, Hashim H, Bufaroosha MS, Yousif E, Hadawey A: Synthesis, structural, and optical properties of modified poly(vinyl chloride) thin films by ethylenediamine loaded with metal oxide nanoparticles. chemistrySelect: 2024;9:1-17. https:// doi.org/10.1002/slct.202401717.