Development of Low-Smoke, Eco-Friendly, Fire Retardant, Intumescent Coatings for GI and Steel Structures

Document Type : Original Article

Authors

1 Fire Safety Engineering, CSIR- Central Building Research Institute, P.O. Box: 247667, Roorkee, India

2 Centre of Excellence-Occupational Health, Safety, Fire and Environment, GD Goenka University, Sohna, P.O. Box: 122103, Gurugram, India

Abstract

This study presents the development of eco-friendly intumescent coatings with reduced smoke emission. Water-based formulations were developed by adjusting the type of binder used (PVAc, PVAc-Epoxy) and incorporating a smoke suppressant filler (Zinc Borate) to enhance performance. Fire tests revealed that these coatings produced carbonaceous char layers over 70 times thicker than the original coating. Char morphology and composition were evaluated via SEM-EDS and TGA. The most effective formulation, comprising a water-based binder with 50 % epoxy and hardener, exhibited superior fire resistance, passing the BS 476 Part 5 ignitability test. It achieved a fire propagation index below 12 (BS 476 Part 6) and attained Class 1 surface flame spread (BS 476 Part 7). Smoke density (ASTM E 662) remained below critical thresholds specified by NFPA 230, with optical densities under 100 and 200 at 1.5 and 4 minutes, respectively. Formulation IC3 nearly satisfied non-combustibility criteria and maintained steel substrate temperatures at approximately 200 °C for 120 minutes in direct flame, demonstrating robust thermal insulation.

Keywords

Main Subjects


  1. Yeomans SR. Galvanized steel reinforcement: recent developments and future opportunities. Corrosion Steel Concrete Structures. 2nd ed. 2022; 161-86. https://doi.org/10.1016/B978-0-12-821840-2.00005-5.
  2. Tariq F, Bhargava P. Residual mechanical behavior of (SD 500) hot-rolled TMT reinforcing steel bars after elevated temperatures. Const Build Mater. 2018; 190: 551-9. https://doi.org/10.1016/j.conbuildmat.2018.09. 008.
  3. De Silva D, Autiero M, Bilotta A, Nigro E. Experimental investigation on galvanized steel elements at elevated temperature. Fire Safety J. 2023; 138:103803. https://doi.org/10.1016/j.firesaf.2023.10 3803.
  4. Shaw S. Halogenated flame retardants: do the fire safety benefits justify the risks? Rev Environ Health. 2010;25(4):261.https://doi.org/10.1515/reveh.2010.25. 4.261.
  5. Mariappan T. Fire retardant coatings. New Technol Protect Coat. 2017. https://doi.org/10.5772/67675.
  6. De Silva D, Nuzzo I, Nigro E, Occhiuzzi A. Intumes-cent coatings for fire resistance of steel structures: current approaches for qualification and design. Coatings. 2022;12(5):696. https://doi.org/10.3390/ coatings12050696.
  7. Zeng Y, Weinell CE, Dam-Johansen K, Ring L, Kiil S. Effects of coating ingredients on the thermal properties and morphological structures of hydro-carbon intumescent coating chars. Prog Org Coat. 2020; 143:105626. https://doi.org/10.1016/j.porgcoat. 2020.105626.
  8. Peskens R. Intumescent coating composition. US patent US2015/0291810A1. 2015.
  9. Duquesne S, Magnet S, Jama C, Delobel R. Thermo-plastic resins for thin film intumescent coatings-towards a better understanding of their effect on intumescence efficiency. Poly Degrad Stabilit. 2005; 88(1):63-9.https://doi.org/10.1016/j.polymdegradstab. 2004.01.026.
  10. Nasirzadeh M, Yahyaei H, Mohseni M. Effects of inorganic fillers on the performance of the water‐based intumescent fire‐retardant coating. Fire Mater. 2022; 47(1):51-61. https://doi.org/10.1002/fam.3067.
  11. Mariappan T. Recent developments of intumescent fire protection coatings for structural steel: a review. J Fire Sci. 2016; 34(2):120-63. https://doi.org/10.1177/ 0734904115626720.
  12. Beh JH, Yew MC, Saw LH, Yew MK. Fire resistance and mechanical properties of intumescent coating using novel BioAsh for steel. Coatings. 2020;10(11): 1117. https://doi.org/10.3390/coatings10111117.
  13. Mohamad WF, Ahmad F, Ullah S. Effect of inorganic fillers on thermal performance and char morphology of intumescent fire retardant coating. Asian J Sci Res. 2013; 6(2):263-71. https://doi.org/10.3923/ajsr.2013. 263.271.
  14. Hu X, Zhu X, Sun Z. Efficient flame-retardant and smoke-suppression properties of MgAlCO3-LDHs on the intumescent fire retardant coating for steel struc-tures. Prog Org Coat. 2019; 135:291-8. https://doi. org/10.1016/j.porgcoat.2019.06.014.
  15. Zeng Y, Weinell CE, Dam-Johansen K, Ring L, Kiil S. Effects of coating ingredients on the thermal properties and morphological structures of hydro- carbon intumescent coating chars. Prog Org Coat. 2020; 143:105626. https://doi.org/10.1016/j.porgcoat. 2020. 105626.
  16. Ullah S, Ahmad F, Shariff A, Bustam M. Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate. Poly Degrad Stabil. 2014; 110:91-103. https://doi.org/10.1016/j.polymdegradstab.2014.08.017.
  17. Zia-ul-Mustafa M, Ahmad F, Ullah S, Amir N, Gillani QF. Thermal and pyrolysis analysis of minerals reinforced intumescent fire retardant coating. Prog Org Coat. 2017; 102:201-16. https://doi.org/10. 1016/j.porgcoat.2016.10.014.
  18. Yasir M, Amir N, Ahmad F, Ullah S, Jimenez M. Effect of basalt fibers dispersion on steel fire protect-tion performance of epoxy-based intumescent coat-ings. Prog Org Coat. 2018;122:229-238. https://doi. org/10.1016/j.porgcoat.2018.05.029.
  19. Wang G, Yang J. Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire-resistant coating for steel structure. Prog Org Coat. 2011;70(2-3):150-6. https://doi.org/10. 1016/j.porgcoat.2010.10.007.
  20. Puri RG, Khanna A. Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel. Prog Org Coat. 2016; 92:8-15. https://doi.org/10. 1016/j.porgcoat.2015.11.016.
  21. Gillani QF, Ahmad F, Abdul Mutalib M, Megat-Yusoff PS, Ullah S, Messet PJ, Zia-ul-Mustafa M. Thermal degradation and pyrolysis analysis of zinc borate reinforced intumescent fire retardant coatings. Prog Org Coat. 2018; 123:82-98. https://doi.org/10. 1016/j.porgcoat.2018.05.007.
  22. Zhan W, Chen L, Cui F, Gu Z, Jiang J. Effects of carbon materials on fire protection and smoke supression of waterborne intumescent coating. Prog Org Coat. 2020;140:105491. https://doi.org/10.1016/j. porgcoat. 2019.105491.
  23. Puri RG, Khanna AS. Influence of heat-stable filler on the thermal shielding performance of water-based intumescent fire-resistive coating for structural steel applications. J Coat Technol Res. 2017; 14(2):323-31. https://doi.org/10.1007/s11998-016-9850-0.
  24. Mariappan T, Agarwal A, Ray S. Influence of titanium dioxide on the thermal insulation of waterborne intumescent fire protective paints to structural steel. Prog Org Coat. 2017;111:67-74. https://doi.org/10.1016/j.porgcoat.2017.04.036.
  25. Ahmad F, Ullah S, Mohammad WF, Shariff MF. Thermal performance of alumina filler reinforced intumescent fire retardant coating for structural application. IOP Conference Series: Mater Sci Eng. 2014;60:012023. https://doi.org/10.1088/1757-899x/ 60/1/012023.
  26. Yi L, Feng S, Wang Z, Ding Y, Chu T, Zhuang Y. A comprehensive model to predict the fire performance of intumescent fire-retardant coating on steel substrate. J Build Eng. 2024; 95:110127. https://doi. org/10.1016/j.jobe.2024.110127.
  27. Martins M, Pereira CM. A study on the effect of nano-magnesium hydroxide on the flammability of epoxy resins. Solid State Phenomena. 2009; 151:72-8. https://doi.org/10.4028/www.scientific.net/ssp.151.72.
  28. Mohd Sabee MM, Itam Z, Beddu S, Zahari NM, Mohd Kamal NL, Mohamad D, Zulkepli NA, Shafiq MD, Abdul Hamid ZA. Flame retardant coatings: additives, binders, and fillers. Polymers. 2022; 14(14):2911. https://doi.org/10.3390/polym14142911.
  29. Gadhave RV, Mahanwar PA, Gadekar PT. [Title not available]. Polymers from Renewable Resources. 2018; 9(2):75-84. https://doi.org/10.1177/2041247918 00900203
  30. Jomy J, Prabhu D, Prabhu PR. Inhibitors incorporated into water-based epoxy coatings on metals for corrosion protection: a review. J Bio- Tribo-Corrosion. 2022; 8(2). https://doi.org/10.1007/s40735-022-00643-7.
  31. Lapprand A, Arribas C, Salom C, Masegosa R, Prolongo M. Epoxy resins modified with poly(vinyl acetate). J Mater Proc Technol. 2003; 143-144:827-31. https://doi.org/10.1016/s0924-0136(03)00356-x.
  32. Harris JL, Squires RH. Epoxy resin-vinyl acetate polymer blends. US Patent 6,235,811. 2001.
  33. Wang G, Yang J. Influences of binder on fire protection and anticorrosion properties of intumescent fire-resistant coating for steel structure. Surface Coat Technol. 2010;204(8):1186-94. https://doi.org/10. 1016/ j.surfcoat.2009.10.040.
  34. Reaction to fire tests for building products. Non-combustibility test. https://doi.org/10.3403/02511868.
  35. Read R. Standard fire tests for building materials and structures. Royal Soc Health J. 1981;101(5):190-5. https://doi.org/10.1177/146642408110100505.
  36. Fire tests on building materials and structures. Fire propagation test for materials. https://doi.org/10. 3403/3030562.
  37. Anjorin SA, Abiwo JD. Evaluation of the fire performance indices of some building materials. Europ J Eng Technol. 2018; 6(6).
  38. Fire tests on building materials and structures. https://doi.org/10.3403/00913153.
  39. Test method for specific optical density of smoke generated by solid materials. https://doi.org/10. 1520/e0662-13d.
  40. Zhang F, Chen P, Wang Y, Li S. Smoke suppression and synergistic flame retardancy properties of zinc borate and di-antimony trioxide in epoxy-based intumescent fire-retardant coating. J Thermal Anal Calorimetry. 2015;123(2):1319-27. https://doi.org/10. 1007/s10973-015-5094-y.