Enhancing Anti-Aging Properties of Golden-Phase Leaves via Zinc Oxide–PVA–Chitosan Coating

Document Type : Original Article

Authors

1 Faculty of Science and Digital Innovation, Thaksin University (Phatthalung Campus), Phatthalung, Thailand

2 Department of Design Art, Faculty of Fine and Applied Arts, Thaksin University, Songkhla, Thailand

3 School of Engineering and Technology, Walailak University, Nakhon Si Thammarat, Thailand

4 Functional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand

5 Division of Physics, School of Science, Walailak University, Nakhon Si Thammarat, Thailand

Abstract

The golden leaf vine (Bauhinia aureifolia K. & S.S. Larsen) is renowned for its distinct heart-shaped leaves and intricate vein patterns, which display natural variations in golden or reddish-brown hues. These unique leaves are traditionally used for decorative purposes and as components of handicraft items. This study aimed to enhance the durability and preserve the natural appearance of these golden-phase leaves with a protective coating. A composite of zinc oxide (ZnO) nanoparticles integrated with chitosan and polyvinyl alcohol (PVA) was formulated and applied by spraying. The results demonstrated that the ZnO-PVA-chitosan composite effectively protected the leaves from moisture and ultraviolet (UV) radiation, significantly minimizing surface degradation and color fading after 18 cycles of accelerated aging. All RGB and CIELAB color indices showed less than five units of deviation from their initial values, indicating strong color retention. The increased L* value reflected a brighter appearance in the spray-coated leaves. In addition to preserving color vibrancy, the composite coating also maintained the structural integrity of the leaves more effectively than the uncoated or differently coated samples. This spray coating of ZnO-PVA-chitosan offers a promising solution for extending the lifespan of golden-phase leaves used in cultural and decorative applications while preserving their natural beauty. 

Keywords

Main Subjects


  1. Sraphet S, Sukawutthiya P, Srisawad N, Duncan RS, Triwitayakorn K. Evaluation of the genetic diversity of Bauhinia winitii, an endemic plant of Thailand, using microsatellite markers. Philipp J Sci. 2021;150 (2):557-569. https://doi.org/10.56899/150.02.20.
  2. Larsen K, Larsen SS. Notes on the genus Bauhinia (Leguminosae‐Caesalpinioideae) in SE Asia. Nord J Bot. 1991;11(6):629-634. https://doi.org/10.1111/j. 1756-1051.1991.tb01275.x
  3. Theppaya A, Ruttajorn K. The design and deve-lopment of golden leaf products to enhance marketing value in southernmost provinces. Parichart J. 2024;37 (4):828-843. https://doi.org/10.55164/ pactj. v 37i4. 272381.
  4. Kora AJ. Leaves as dining plates, food wraps and food packing material: Importance of renewable resources in Indian culture. Bull Natl Res Cent. 2019;43,205. https://doi.org/10.1186/s42269-019-0231-6. 
  5. Elsamanoudy G, Mahmoud NSA, Alexiou P. Handwoven interior accessories from palm leaves as sustainable elements. J Cult Heritage Manage Sust Dev. 2024; online first. https://doi.org/10.1108/JCH MSD-05-2023-0054
  6. Pardi H, Fitriyah D, Silitonga FS, Edelwis TW, Wardani RK, Permana D, Priyangga A, Fitriyah D, Ramdhani EP. The antimicrobial potential of ZnO-chitosan/ pandan leaves: Advancing antimicrobial textile technology. J Dispers Sci Technol. 2025;46 (4):601-610. https://doi.org/10.1080/01932691 .2023. 2296593.
  7. Zare A. Application of β-CD to control the release of ZnO nanoparticles on the silk fabric surface along with citric acid as eco-friendly cross-linker. Prog Color Colorant Coat. 2023;16(3):295-307 https://doi. org/10.30509/pccc.2023.167048.1193. 
  8. AL-Rubaiawi HK, Faisal Alwan A, Ayad Husain A, Muhamed Ibrahim N, Abdul Kareem Ali D, Tariq Mahmood A. Structural and optical properties of doped polystyrene thin films by (NiO, TiO2, ZnO, MgO) nanoparticles. Prog Color Colorant Coat. 2025; 18(3):323-341. https://doi.org/10.30509/pccc.2025.67 428 1344.
  9. Dejene BK, Abtew MA. Chitosan/zinc oxide (ZnO) nanocomposites: A critical review of emerging multi-functional applications in food preservation and biomedical systems. Int J Biol. Macromol. 2025;316 (1):144773. https://doi.org/10.1016/j.ijbiomac.2025. 144773.
  10. Chavez-Esquivel G, Ángeles-Beltrán D, Tellez de la Torre PM, Cortes-Cordova DE, Huerta-Arcos L, Estrada de los Santos P. Antimicrobial and antifungal edible coatings with ZnO nanoparticles dispersed in a chitosan-guar gum matrix for hass avocado pre-servation. Int J Biol Macromol. 2025;308(Part 4):142 467. https://doi.org/10.1016/j.ijbiomac.2025. 142467.
  11. Sadeghi-Kiakhani M, Hashemi E. Study on the effect of pomegranate peel and walnut green husk extracts on the antibacterial and dyeing properties of wool yarn treated by chitosan/Ag, chitosan/Cu nanoparticles. Prog Color Colorant Coat. 2023;16(3):221-229. https://doi.org/10.30509/pccc.2022.167030.1188.
  12. Al-Naamani L, Dobretsov S, Dutta J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol. 2016;38(A):231-237. https://doi.org/10.1016 /j.ifset.2016.10.010.
  13. Wei X, Li Q, Wu C, Sun T, Li X. Preparation, characterization and antibacterial mechanism of the chitosan coatings modified by Ag/ZnO microspheres. J Sci Food Agric. 2020;100(15):5527-5538 https://doi. org/10.1002/jsfa.10605.
  14. Haldorai Y, Shim JJ. Chitosan-Zinc Oxide hybrid composite for enhanced dye degradation and anti-bacterial activity. Compos Interfaces. 2013;20(5):365-377. https://doi.org/10.1080/15685543.2013.806124.
  15. Pholnak P, Khongbun J, Suksom K, Lertworapreecha M, Suwanboon S, Sirisathitkul C. Antifungal efficacy of chitosan-modified zinc oxide nanoparticles on tube sedge products. J Nanostruct. 2020;10(2):424-433. https://doi.org/10.22052/JNS.2020.02.020.
  16. Yu D, Basumatary IB, Liu Y, Zhang X, Kumar S, Ye F, Dutta J. Chitosan-photocatalyst nanocomposite on polyethylene films as antimicrobial coating for food packaging. Prog Org Coat. 2024;186:108069 https:// doi.org/10.1016/j.porgcoat.2023.108069.
  17. Evren G, Koşak Söz Ç, Özomay Z, Uzun M, Sönmez S. Effect of the coating formulation on the barrier properties and final appearance of non-wettable hybrid paper sheets. Prog Color Colorant Coat. 2024; 17(3): 239-262. https://doi.org/10.30509/pccc.2024. 167221. 1257. 
  18. Márton P, Nagy ÖT, Kovács D, Szolnoki B, Madarász J, Nagy N, Szabó GS, Hórvölgyi Z. Barrier behaviour of partially N-acetylated chitosan layers in aqueous media. Int J Biol Macromol. 2023;232: 123336. https://doi.org/10.1016/j.ijbiomac.2023.1233 36.
  19. Szőke ÁF, Szabó G, Simó Z, Hórvölgyi Z, Albert E, Végh AG, Zimányi L, Muresan LM. Chitosan coatings ionically cross-linked with ammonium paratungstate as anticorrosive coatings for zinc. Eur Polym J. 2019;118:205-212. https://doi.org/10.1016/j. eurpolymj.2019.05.057.
  20. Al-Naamani L, Dutta J, Dobretsov S. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus es-culentus). Nanomater. 2018;8(7):479. https://doi.org /10.3390/nano8070479.
  21. Sathianathan RV, Joseph J, Ilanthendral K, Raveena R. Analysis of smart packaging film for tomato freshness: ZnO-Fe2O3/PVA with Musa paradisiaca bract anthocyanin. Food Biophys. 2025;20:84. https://doi.org/ 10.1007/s11483-025-09971-w.
  22. Wei XQ, Li XP, Wu CL, Yi SM, Zhong KL, Sun T, Li JR. The modification of in situ SiOx chitosan coatings by ZnO/TiO2 NPs and its preservation properties to silver carp fish balls. J Food Sci. 2018;83(12):2992-3001. https://doi.org/10.1111/1750-3841.14381.
  23. Szőke ÁF, Szabó GS, Hórvölgyi Z, Albert E, Végh AG, Zimányi L, Muresan LM. Accumulation of 2-Acetylamino-5-mercapto-1,3,4-thiadiazole in chitosan coatings for improved anticorrosive effect on zinc. Int J Biol Macromol. 2020;142:423-431. https://doi.org/ 10.1016/j.ijbiomac.2019.09.114.
  24. Szőke ÁF, Szabó GS, Hórvölgyi Z, Albert E, Gaina L, Muresan LM. Eco-friendly indigo carmine-loaded chitosan coatings for improved anti-corrosion pro-tection of zinc substrates. Carbohydr Polym. 2019; 215:63-72. https://doi.org/10.1016/j.carbpol.2019.03. 077.
  25. Wafi A, Khan MM. Green synthesized ZnO and ZnO-based composites for wound healing appli-cations. Bioprocess Biosyst Eng. 2025;48:521-542. https://doi.org/10.1007/s00449-024-03123-z.
  26. Monika P, Hari Krishna R, Hussain Z, Nandhini K, Pandurangi SJ, Malek T, Kumar SG. Antimicrobial hybrid coatings: A review on applications of nano ZnO based materials for biomedical applications, Bio-mater Adv. 2025;172:214246. https://doi.org/10.1016/ j.bioadv.2025.214246.
  27. Salama A. Chitosan/silk fibroin/zinc oxide nano-composite as a sustainable and antimicrobial bio-material. Cellul Chem Technol. 2018;52(9-10):903-907.
  28. Harini B, Rajeshkumar S, Roy A. Biomedical application of chitosan and piper longum-assisted nano zinc oxide–based dental varnish. Appl Biochem Biotechnol. 2022;194(3):1303-1309. https://doi.org/ 10. 1007/s12010-021-03712-8. 
  29. Dejen KD, Zereffa EA, Murthy HCA, Merga A. Synthesis of ZnO and ZnO/PVA nanocomposite using aqueous Moringa Oleifeira leaf extract template: Antibacterial and electrochemical activities. Rev Adv Mater Sci. 2020;59(1):464-476. https://doi.org/10.1515/ ams- 2020-0021.
  30. Sirisathitkul Y, Kaewareelap S. Color analysis of batik fabric by facile smartphone colorimetry. Int J Adv Sci Eng Inf Technol. 2021;11(1):84-91. https://doi.org/10. 18517/ijaseit.11.1.11480.                    
  31. Read TL, Doolette CL, Li C, Schjoerring JK, Kopittke PM, Donner E, Lombi, E. Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorp-tion?. Physiol Plant. 2020;170:384-397. https://doi. org/10.1111/ppl.13167.
  32. Adhikari T, Kundu S, Rao AS. Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutr. 2016;39(1):136-146. https://doi.org/10. 1080/01904167.2015.1087562.
  33. Gabriela RN, Heryanto H, Tahir D. Nanocomposite TiO2/ZnO/chitosan by method sol-gel for self-cleaning application. Int J Biol Macromol. 2025;298:140076. https://doi.org/10.1016/j.Ijbiomac.2025.140076.