Corrosion Protection of Mild Steel in Acidic Media by a Triazole-Based Inhibitor: Mechanistic Insights and Performance Evaluation

Document Type : Original Article

Authors

1 Biomedical Engineering Department, University of Technology, Baghdad P.O. Box: 10001, Baghdad, Iraq

2 Biomedical Engineering Department, College of Engineering, Al-Ayen University (AUIQ), Nile St, Nasiriyah P.O. Box: 64001, Dhi Qar, Iraq

Abstract

The present work investigates the corrosion inhibition behavior of 4-(4-methoxybenzylidene)amino-5-pyridin-3-yl-3-thio-1,2,4-triazole (MAPTT) on mild steel in 1 M HCl using the weight loss method over a range
of concentrations (0.1-1.0 mM) and immersion durations (1-48 hours).
The inhibition efficiency (IE%) was found to rise with increasing inhibitor concentration, achieving a maximum value of 92.7% at 0.5 mM after 48 hours. Although a gradual improvement in efficiency was observed with longer 
immersion periods, it tended to stabilize after 10 hours. Investigations at different temperatures (303–333 K) over a 5-hour immersion period revealed a slight improvement in inhibition efficiency, suggesting good thermal stability of MAPTT. The process of adsorption obeyed Langmuir model, referring to a combination of chemical and physical adsorption mechanisms. In comparison with previously reported inhibitors, MAPTT demonstrated superior performance, attributed to its strong adsorption and stable protective film formation at elevated temperatures, ensuring sustained corrosion resistance. Density Functional Theory (DFT) predictions, having the analysis of HOMO and LUMO orbitals, identified active adsorption centers within the molecule. Furthermore, the calculated band gap in addition to electron transfer fraction (Δ𝑁) supported the strong interactions between MAPTT and specimen surface. The excellent correlation of experimental techniques and theoretical DFT calculations highlights the promise of MAPTT as a thermally robust and highly efficient corrosion inhibitor for industrial use in corrosive solution. 

Keywords

Main Subjects


  1. Wang R, Lin S, Song W, Liu Z. Occurrence and potential endocrine benzotriazoles disrupting effects of and thiazolinones in municipal wastewater treatment plants. Chemosphere. 2014; 112:288-294. https://doi.org/10.1016/j.chemosphere. 2014.04.007. 
  2. Khaled KF, Hackerman N. Synergistic inhibition of aluminum alloy corrosion by mixtures of 2mercapto-benzothiazole and potassium iodide. J Electrochem Soc. 2003;150(2). https://doi.org/10. 1149/1.1539013. 
  3. Quraishi MA, Ebenso EE. Synergistic effect of ammonium nitrate and iodide ions on the corrosion inhibition of mild steel in acidic medium by some 1,3,4-oxadiazoles. Corr Sci. 2014; 85:25-35. https://doi.org/10.1016/j.corsci.2014.03.022.
  4. Vaszilcsin N, Ordodi V, Borza A. Corrosion inhibitors from expired drugs. Inter J Pharm. 2012; 431(1-2): 2414. https://doi.org/10.1016/j.ijpharm. 2012. 04.015. 
  5. Al-Shafey HI, Hameed RA, Ali FA, Aboul-Magd AE, Salah M. Effect of expired drugs as corrosion inhibitors for carbon steel in 1M HCL solution. Int J Pharm Sci Rev Res. 2014; 27(1):146-52. https://doi. org/10.15344/2394-8376/2024/146.
  6. Dehghani A, Ghahremani P, Mostafatabar AH, Ramezanzadeh B. Plant extracts: Probable alternatives for traditional inhibitors for controlling alloys corrosion against acidic media-A review. Biomass Con Bioref. 2024; 14(6):7467-86. https://doi.org/10. 1007/s13399-023-03907-0. 
  7. Gong W, Yin X, Liu Y, Chen Y, Yang W. 2-Amino4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium. Prog Org Coat. 2019; 126:150-161. https://doi.org/10.1016/j. porgcoat.2018.10.001. 
  8. Dehghani A, Berdimurodov E, Verma C, Verma DK, Berdimuradov K, Quraishi MA, Aliev N. Constructing efficacy: A novel perspective on organic corrosion inhibitors and interfacial interactions. Chem Papers. 2024; 78(3):1367-97. https://doi.org/10.1007/s116960 23-02586-4.
  9. Döner A, Solmaz R, Özcan M, Kardaş G. Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution. Corr Sci. 2011; 53(9):2902-2913. https://doi. org/10.1016/j.corsci.2011.05.034. 
  10. Yang X, Li F, Zhang W. 4-(Pyridin-4-yl) thiazol-2amine as an efficient non-toxic inhibitor for mild steel in hydrochloric acid solutions. RSC Adv. 2019;9 (19):10454-64. https://doi.org/10.1039/C9RA00672H. 
  11. Abdulwali N, Mohammed F, Al Subari A, Ghaddar H, Guenbour A, Bellaouchou A, Essassi EM, Cottis RA. Effect of thiazole derivatives on the corrosion of mild steel in 1 M HCl solution. Intern J Electrochem Sci. 2014; 9(11):6402-15. https://doi.org/10.20964/ 2014. 11.20. 
  12. Zunita M, Rahmi VA. Advancement of plant extract/ionic liquid-based green corrosion inhibitor. Chem Africa. 2024; 7(2):505-38. https://doi.org/10. 1007/s42250-023-00426-0. 
  13. Abuelela, A.M., Bedair, M.A., Gad, E.S. et al. Exploring the synthesis, characterization, and corrosion inhibition of new tris-thiosemicarbazone derivatives for acidic steel settings using computa-tional and experimental studies. Sci Rep. 2024,14, 13310. https://doi.org/10.1038/s41598-024-64199-x.
  14. Gad, E.S., Abbas, M.A., Bedair, M.A. et al. Synthesis and applications of novel Schiff base derivatives as corrosion inhibitors and additives for improvement of reinforced concrete. Sci Rep. 2023; 13:15091. https://doi.org/10.1038/s41598-023-41165-7
  15. Akpan ED, Singh AK, Lgaz H, Quadri TW, Shukla SK, Mangla B, Dwivedi A, Dagdag O, Inyang EE, Ebenso EE. Coordination compounds as corrosion inhibitors of metals: A review. Coord Chem Rev. 2024; 499:215503. https://doi.org/10.1016/j.ccr. 2024. 215503. 
  16. Toghan A, Alduaij OK, Fawzy A, Mostafa AM, Eldesoky AM, Farag AA. Effect of adsorption and interactions of new triazole-thione-schiff bases on the corrosion rate of carbon steel in 1 M HCl solution: theoretical and experimental evaluation. ACS Omega. 2024;9(6):6761-6772. https://doi.org/10.1021/ acsomega.3c08127. 
  17. Mortadi K, El Amri A, Ouakki M, Hsissou R, Jebli A, Lebkiri A, Safi Z, Wazzan N, Berisha A, Cherkaoui M, Hbaiz EM. Electrochemical and theoretical studies on a bioactive Juniperus oxycedrus essential oil as a potential and ecofriendly corrosion inhibitor for mild steel in 1.0 M HCl environment. Inorg Chem Commun. 2024; 112196. https://doi.org/ 10.1016/j.inoche.2024.112196.
  18. ASTM International, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test, 2011, 1-9. 
  19. NACE International, Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solutions at Temperatures below 93 °C (200 °F), TM0193-2016-SG, 2000. 
  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 03, Revision B. 05, Gaussian, Inc., Wallingford, CT, 2004. 
  21. Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica. 1934; 1(1-6):10413. https://doi.org/10.1016/S0031-8914(34)90011-2. 
  22. Lavanya M, Ghosal J, Rao P. A comprehensive review of corrosion inhibition of aluminium alloys by green inhibitors. Canadian Metallur Quart. 2024; 63(1):119-29. https://doi.org/10.1080/00084433.2024. 1132326.
  23. Bhatia AK, Dewangan S. N-heterocyclics as corrosion inhibitors: miscellaneous. In Handbook of Heterocyclic Corrosion Inhibitors 2024 (pp. 249-270). CRC Press. https://doi.org/10.1201/9781003331285. 
  24. Touir R, Errahmany N, Rbaa M, Benhiba F, Doubi M, Kafssaoui EE, Lakhrissi B. Experimental and computational chemistry investigation of the molecular structures of new synthetic quinazolinone derivatives as acid corrosion inhibitors for mild steel. J Mol Struct. 2024; 1303:137499. https://doi.org/10. 1016/j.molstruc.2024.137499.
  25. Abd El Wanees S, Kamel MM, Ibrahim M, Rashwan SM, Atef Y, Abd Elsadek MG. Corrosion inhibition and synergistic effect of ionic liquids and iodide ions on the corrosion of C-steel in formation water associated with crude oil. J Umm Al-Qura University Appl Sci. 2024; 10(1):107-19. 
  26. Sehrawat R, Vashishth P, Bairagi H, Shukla SK, Kumar H, Ji G, Mangla B. Coordination bonding and corrosion inhibition characteristics of chalcone compounds for metals: An inclusive review based on experimental as well as theoretical perspectives. Coordin Chem Rev. 2024; 514:215820. https://doi. org/10.1016/j.ccr.2024.215820.
  27. González-Parra JR, Di Turo F. The Use of Plant extracts as sustainable corrosion inhibitors for cultural heritage alloys: a mini-review. Sustainability. 2024; 16(5):1868. https://doi.org/10.3390/su16051868. 
  28. Zhao Y, Teng X, Xu Z. The scale inhibition mechanism of sodium humate on heat transfer surface: Insights from electrochemical experiments, quantum chemical calculations, and molecular dynamics simulation. Inter J Heat Mass Transfer. 2024;220: 124966. https://doi.org/10.1016/j.ijheatmasstransfer. 2023.124966. 
  29. Namdar-Asl H, Fakheri F, Pour-Ali S, Tavangar R, Hejazi S. Synthesis and corrosion inhibition study of 1aminobenzotriazole for mild steel in HCl solution: electrochemical, surface analysis, and theoretical investigations. Prog Color Colorant Coat. 2024; 17(1): 61-74. https://doi.org/10.30502/PCCC.2023.359903. 
  30. Touir R, Errahmany N, Rbaa M, Benhiba F, Doubi M, Kafssaoui EE, Lakhrissi B. Experimental and computational chemistry investigation of the molecular structures of new synthetic quinazolinone derivatives as acid corrosion inhibitors for mild steel. J Mol Struct. 2024; 1303:137499. https://doi.org/10. 1016/j.molstruc.2023.137499. 
  31. Coy-Barrera CA, Quiroga D. In silico evaluation for the design of coumarin-type compounds based on phenol and naphthol rings as a coating in carbon steel corrosion processes: DFT B3LYP calculations, synthesis and electrochemical characterization. Prog Org Coat. 2024; 188:108266. https://doi.org/10.1016/ jporgcoat.2023.108266. 
  32. Sheit HM, Mohan KS, Gunavathy KV, Mohamed MV, Subhapriya P, Samsathbegum A, Sindhuja GH. Investigation on the corrosion inhibition efficiency of 2,4-diphenyl-3-aza bicyclo [3.3.1] nonan-9-one in carbon steel immersed in acidic media. Chem Phys Impact. 2024; 8:100521. https://doi.org/10.1016/j. chphi.2023.100521.  
  33. Anadebe VC, Chukwuike VI, Nayak KC, Ebenso EE, Barik RC. Combined electrochemical, atomic scaleDFT and MD simulation of Nickel based metal organic framework (Ni-MOF) as corrosion inhibitor for X65 pipeline steel in CO2-saturated brine. Mater Chem Phys. 2024; 312:128606. https://doi.org/10. 1016/j.matchemphys.2023.128606. 
  34. Laarioui A, Chaouki I, Hmada A, El Magri A, Errahmany N, El Hajri F, Dkhireche N, Bakkali S, Touir R, Boukhris S. Corrosion inhibition effect of the synthetized chromen-6-one derivatives on mild steel in 1.0 M HCl electrolyte: electrochemical, spectroscopic and theoretical studies. Mor J Chem. 2024; 12(2):570-93. https://doi.org/10.48317/IMIST. PRSM/morjchem-v12i2.40860. 
  35. Pai GD, Rathod MR, Rajappa SK, Kittur AA. Effect of tabebuia heterophylla plant leaves extract on corrosion protection of low carbon steel in 1M HCl medium: Electrochemical, quantum chemical and surface characterization studies. Results Surf Inter. 2024; 15:100203. https://doi.org/10.1016/j.rsurfin. 2023. 100203. 
  36. Dahmani K, Galai M, Rbaa M, Ech-Chebab A, Errahmany N, Guo L, AlObaid AA, Hmada A, Warad I, Touhami ME, Cherkaoui M. Evaluating the efficacy of synthesized quinoline derivatives as corrosion inhibitors for mild steel in acidic environments: An analysis using electrochemical, computational, and surface techniques. J Mol Struct. 2024; 1295:136514. https://doi.org/10.1016/j.molstruc.2023.136514.
  37. Akrom M, Rustad S, Dipojono HK. A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors. Phys Scripta. 2024; 99(3):036006. https://doi.org/10.1088/1402-4896/ace0d2. 
  38. Fang J, Li J. Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. J Mol Struct. 2002; 593(1-3):179-85. https://doi.org/10. 1016/ S0166-1280(02)00316-0
  39. Lukovits I, Kalman E, Zucchi F. Corrosion inhibitors-correlation between electronic structure and efficiency. Corrosion. 2001; 57(1):3-8. https://doi.org/ 10.5006/1.3290328.
  40. Fernandes CM, Coutinho MS, Leite MC, Martins V, Batista MP, Faro LV, Al-Rashdi AA, Silva JC, Batalha PN, Lgaz H, Ponzio EA. Green-synthetized βamino-α-carbethoxy ethyl acrylates as corrosion inhibitors for mild steel in acid media: Experimental performance evaluation and atomic/molecular-level modeling. Inorg Chem Commun. 2024; 159:111722. https://doi.org/10.1016/j.inoche.2023.111722. 
  41. Essien KE, Okon EJ, Archibong IN, Okon OE, George IE. Experimental, quantum chemical and IR spectroscopy studies on the corrosion inhibition of mild steel by 3,5-dimethyl-4-nitroisoxazole in HCl solutions. J Mater Environ Sci. 2024; 15(1):136. https://doi.org/10.26872/jmes.2021.12.6.40. 
  42. Benachour N, Delimi A, Allal H, Boublia A, Sedik A, Ferkous H, Djedouani A, Brioua S, Boulechfar C, Benzouid H, Houssou A. 3,4-Dimethoxy phenyl thiosemicarbazone as an effective corrosion inhibitor of copper acidic experimental, solution: characteri-zation comprehensive and theoretical investigations. RSC Adv. 2024; 14(18):12533-55. https://doi.org/10. 1039/D3RA06847G.
  43. Kumar D, K VM, Jain V, Rai B. Accelerating corrosion inhibitor discovery through computational routes: a case of naphthalene 1-thiocarboxamide. Mater Degrad. 2024;8(1):5. https://doi.org/10.1038/ s41529-023-00310-7. 
  44. Narang R, Vashishth P, Bairagi H, Sehrawat R, Shukla SK, Mangla B. Experimental and quantum chemical investigation of corrosion inhibitive action of sertraline on mild steel in acidic medium. Chem Africa. 2024; 24:1-7. https://doi.org/10.1007/s42250-02300437-1. 
  45. Fang Q, Yang X, Pan G, Yang X, Qi Y. Experimental and density functional theory study of inhibitors on cobalt corrosion for chemical mechanical planarization process. ECS J Solid State Sci Technol. 2024; 13(4): 044007. https://doi.org/10.1149/2162-8777/ acdbe0. 
  46. Errahmany N, Rouifi Z, Kharbouch O, Tazouti A, Chahboune M, Rbaa M, Larhzil H, Touir R. Molecular structure of synthetized hydrazinylidene based quinoxaline derivatives effect on mild steel corrosion inhibition in 1.0 HCl electrolyte: Synthesis, electrochemical and computational studies. J Mol Struct. 2024; 1308:138146. https://doi.org/10.1016/ j.molstruc.2023.138146. 
  47. Ferkous H, Sedik A, Delimi A, Redjemia R, Abdesalem K, Boulechfar C, Abdennouri A, Madaci A, Berredjem M, Boublia A, Ali MS. A comparative study of novel synthesized sulfamide compounds: Electrochemical, morphological, XPS, and theoretical investigations on copper corrosion inhibition in 1.0 M HCl. J Mol Liq. 2024; 394:123781. https://doi.org/ 10.1016/j.molliq.2023.123781. 
  48. Mortadi K, El Amri A, Ouakki M, Hsissou R, Jebli A, Lebkiri A, Safi Z, Wazzan N, Berisha A, Cherkaoui M, Hbaiz EM. Electrochemical and theoretical studies on a bioactive Juniperus oxycedrus essential oil as a potential and ecofriendly corrosion inhibitor for mild steel in 1.0 M HCl environment. Inorg Chem Commun. 2024: 112196. https://doi.org/ 10.1016/j.inoche.2023.112196.