Investigation of Printing Parameters on Dimensional Accuracy of Geometrically Complex Objects in FDM 3D Printing

Document Type : Original Article

Authors

1 Polymer Engineering Department, Qom University of Technology, P.O. Box: 1519-37195, Qom, Iran

2 Department of Printing Science and Technology, Institute for Color Science and Technology, P.O. Box: 32465-654, Tehran, Iran

Abstract

This study examines the effects of seven key printing parameters—bed temperature, nozzle temperature, nozzle diameter, print speed, infill density, infill angle, and layer height—on the dimensional accuracy of geometrically complex parts, such as screws and nuts, fabricated using Fused Deposition Modeling (FDM). Utilizing an L8 orthogonal array within a design of experiments (DOE) framework, the parameters were analyzed for their influence on both overall and detailed dimensional characteristics across length, width, and height axes. The results reveal that layer height, nozzle diameter, and bed temperature significantly impact dimensional accuracy, with interactions between factors playing a crucial role. The maximum observed variation was 4 % for screw diameters and 7 % for nut diameters. Findings highlight the importance of optimizing parameter interactions to enhance accuracy and the practical utility of Taguchi's methodology in reducing experimental complexity. This research provides valuable insights for improving the precision of 3D-printed components, particularly in applications requiring complex geometries.

Keywords

Main Subjects


  1. Prabhakar M M, Saravanan AK, Haiter Lenin A, Mayandi K, Sethu Ramalingam P. A short review on 3D printing methods, process parameters and materials. Mater Today: Proc. 2021;45:6108-6114, https://doi.org/10.1016/j.matpr.2020.10.225
  2. Vora HD, Sanyal S. A comprehensive review: Metrology in additive manufacturing and 3D printing technology. Prog Add Manuf. 2020;5(4):319353. https://doi.org/10.1007/s40964-020-00142-6
  3. Kumar A. et al. Application of 3D printing for engineering and bio-medicals: Recent trends and development. Int J Interact Des Manuf. 2023;17(5): 2127-2136. https://doi.org/10.1007/s12008-022-01145 -z.
  4. Shanmugam V, Pavan MV, Babu K, Karnan B. Fused deposition modeling based polymeric materials and their performance: A review. Polym Compos. 2021; 42(11): 5656-5677. https://doi.org/10.1002/pc.26275.
  5. Rahim T N A T, Abdullah A M, Akil H. Recent developments in fused deposition modeling-based 3D Printing of polymers and their composites. Polym Rev. 2019;59(4):589-624. https://doi.org/10.1080/ 15583724.2019.1597883.
  6. Sandanamsamy L. A comprehensive review on fused deposition modelling of polylactic acid. Progress Additive Manuf. 2022;17:1-25, https://doi.org/ 10.1007/s40964-022-00356-w
  7. Kharmanda G. Challenges and future perspectives for additively manufactured polylactic acid using fused filament fabrication in dentistry. J Funct Bio. 2023; 14(7): 334. https://doi.org/10.3390/jfb14070334.
  8. Syrlybayev D. Optimization of strength properties of FDM printed parts-A critical review. Polym. 2021; 13(10):1584. https://doi.org/10.3390/polym 13101587.
  9. Gordelier TJ, Thies PR, Turner L, Johanning L. Optimizing the FDM additive manufacturing process to achieve maximum tensile strength: A state-of-the-art review. Rapid Prototyp J. 2019; 25(6):953-971. https://doi:10.1108/RPJ-07-2018-0183.
  10. Enyan M, Amu-Darko J N O, Issaka, E, Abban O J. Advances in fused deposition modeling on process, process parameters, and multifaceted industrial application: A review Eng Res Exp. 2024; https://doi. org/10.1088/2631/8695/ad32f6.
  11. Anerao, Prashant, Atul Kulkarni, and Yashwant Munde. A review on exploration of the mechanical characteristics of 3D-printed biocomposites fabricated by fused deposition modelling (FDM). Rapid Prototyp J. 2024; 30(3):430-440. https://doi.org/10.1108/RPJ-04-2023-0150.
  12. Alakas HM, Yazici E, Ebiri U, Kizilay BA, Oruc O. Selection of 3D printing technologies for prosthesis production with multi-criteria decision-making methods. Int J Interact Des Manuf. (IJIDeM), 2023; 17:1-17. https://doi:10.1007/s12008-023-01489-0.
  13. Song X. Properties of poly (lactic acid)/walnut shell/hydroxyapatite composites prepared with fused deposition modeling. Sci Rep. 2022;12(1):11563. https://doi.org/10.1038/s41598-022-15622-8.
  14. Farajian J. Hatami O. Bakhtiari M. Darabinajand B. Mahboubkhah M. Investigation of mechanical properties of 3D-printed PLA coated with PU/ MWCNTs in a corrosive environment. Arab J Sci Eng. 2024;1-13. https://doi.org/10.1007/s13369-023-08632-9.
  15. Solouki AMRM. Aliha, AM. Naghdali C. Hamidreza S. Analyzing the effects of printing parameters to minimize the dimensional deviation of polylactic acid parts by applying three different decision-making approaches. Sci Rep. 2024;14(1):27674. https://doi. org/10.1038/s41598-024-78952-9.
  16. Mengesh M T. A comprehensive review on the optimization of the fused deposition modeling process parameter for better tensile strength of PLA-printed parts. Adv Mater Sci Eng. 2022; https://doi.org/ 10.1155/2022/5490831. 
  17. Liu Z. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol. 2019;102(9): 2887-2889. https://doi.org/10.1007/s00170-019-03332 -x.
  18. Tripathy C R. Sharma R K. Rattan VK. Effect of printing parameters on the mechanical behavior of the thermoplastic polymer processed by FDM technique: A research review. Adv Prod Eng Manage. 2022;17(3): 279-294. https://doi.org/10.14743/apem 2022.3.436.
  19. Popescu D. Zapciu A. Amza C. Baciu, F. Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym Test. 2018;69:157-166. https://doi.org/ 10.1016/j.polymertesting.2018.05.020.
  20. Kumar A, Dixit AR, Sreenivasa S. Mechanical properties of additively manufactured polymeric composites using sheet lamination technique and fused deposition modeling: A review. Polym Adv Technol. 2024;35(4):e6396. https://doi.org/10.1002/ pat.6396 
  21. Dey A, Yodo N. A systematic survey of FDM process parameter optimization and their influence on part characteristics. J Manuf Mater Process. 2019; 3(3):64 https://doi.org/10.3390/jmmp3030064.
  22. Alafaghani A, Qattawi A. Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. J Manuf Proc. 2018;36:164-174; https://doi.org/10.1016/j. jmapro.2018.09.025
  23. Cardoso PHM. Mechanical and dimensional performance of poly (lactic acid) 3D-printed parts using thin plate spline interpolation. J Appl Pol Sci. 2020;137(39):1-18. https://doi.org/10.1002/app.49171.
  24.  Enemuoh EU, Duginski S, Feyen C, Menta VG. Effect of process parameters on energy consumption, physical, and mechanical properties of fused deposition modeling. Polymers. 2021;13(15):1-16. https://doi.org/10.3390/polym13152406.
  25. Haghighi A, Li L. Study of the relationship between dimensional performance and manufacturing cost in fused deposition modeling. Rapid Prot J. 2018;24(2): 395-408. https://doi.org/10.1108/RPJ-11-2016-0177.
  26. Mohamed OA, Masood SH, Bhowmik JL, Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv Manuf. 2015;3(1):42-53. https://doi. org/10.1007/s40436-014-0097-7.
  27. Li H, Wang T, Li Q, Yu Z, Wang N. A quantitative investigation of distortion of polylactic acid/PLA) part in FDM from the point of interface residual stress. Int J Adv Manuf Technol. 2018;94(1-4):381-395. https://doi.org/10.1007/s00170-017-0820-1 
  28. Galetto M, Verna E, Genta G. Effect of process parameters on parts quality and process efficiency of fused deposition modeling. Computers Industrial Eng. 2021;156:107238. https://doi.org/10.1016/j.cie.2021. 107238
  29. Frunzaverde D. The influence of the Printing temperature and the filament color on the dimensional accuracy, tensile strength, and friction performance of FFF-Printed PLA specimens. Polymers. 2022; 14: 10. https://doi.org/10.3390/polym14101978.
  30. Potnis MS. Part quality investigation in fused deposition modeling using machine learning classifiers. Int J Interact Des Manuf. 2023; 18:1305-329. https://doi.org/10.1007/s12008-023-01493-4
  31. Garg PK. Singh R. Ips A. Multi-objective optimization of dimensional accuracy, surface roughness and hardness of hybrid investment cast components. Rapid Prototyp J. 2017;23(5):845-857. https://doi.org/10.1108/RPJ-10-2015-0149. 
  32. Hasdiansah H, Yaqin RI, Pristiansyah P, Umar ML, Priyambodo BH. FDM-3D printing parameter optimization using taguchi approach on surface roughness of thermoplastic polyurethane parts. 1–14 Int J Interact Dec Manuf. 2023; 17:3011-3024. https://doi:10.1007/s12008-023-01304-w.
  33. Camposeco-Negrete C. Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Prog Add Manuf. 2025; 1:59-65. https://doi:10.1007/s40964-020-00115-9.
  34. Johar Amirah AR, Raa KSh, Zuratul AAH. Dimensional stability of poly (lactic acid) (PLA) parts fabricated using fused deposition modelling (FDM). Prog Rub Plast Recyc Technol. 2024;41(2):17-27. https://doi.org/10.1177/14777606241262882.
  35. Liu J. Kanglong F. Zhou S. Baoshen R. Yansong L. Dimensional deviations and distortion mechanism of polymer spur gear fabricated by fused deposition modeling. J Mater Eng Perform. 2024;11:1-10. https://doi:10.33894/mtk-2024.20.03.
  36. Ullah I, Muhammad W, Muhammad T. Analysis of shrinkage and dimensional accuracy of additively manufactured tooling for the composite manu-facturing. Inter J Interact Des Manuf. 2024; 18(2): 673-684, https://doi:10.1007/s12008-023-01640-x.