Investigating the Effect of Zinc Oxide Nanoparticles on the Absorption of Ultraviolet Radiation for Enhancing the Efficacy of Sunscreen Products

Document Type : Original Article

Authors

1 Department of Material and Metallurgical Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran2 Graphene and Advanced Materials Laboratory (GAMLab.), Amirkabir University of Technology, Tehran, Iran

2 Graphene and Advanced Materials Laboratory (GAMLab.), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran

3 Department of Inorganic Pigments and Glazes, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran‎‏,‏ Iran

Abstract

The degradation of the ozone layer and the consequent increase in ultraviolet (UV) radiation exposure have heightened interest in the development of mineral-based sunscreens. This study investigates the absorption characteristics of ultraviolet waves in mineral-based sunscreens formulated with various nanostructures of Zinc Oxide (ZnO), characterized by differing sizes (ranging from 40 to 70 nm) and morphologies, including plate-like, spherical, hedgehog-shaped, and irregular forms (predominantly rods). The protective efficacy against ultraviolet radiation was assessed using a visible-ultraviolet spectrometer and a diffuse reflectance spectrometer. The results indicate that most morphologies and dimensions of ZnO nanoparticles enhance the surface area available for the reflection and scattering of ultraviolet rays, thereby increasing the level of protection. Notably, the Z1 sample, exhibiting the plate-like morphology with a plate size of 71 nm, demonstrated the highest absorption rate. Additionally, the study reveals that increasing the concentration of ZnO in sunscreen formulations up to a critical threshold of 15 wt. % enhances UV protection; however, further increases to 21 wt. % result in a decline in protective efficacy. The sun protection factor (SPF) for the Z1 sample, which exhibited the highest level of protection, was calculated to be 47, indicating its potential suitability for commercialization in mineral-based sunscreen products. 

Keywords

Main Subjects


  1.                 Al-Sadek T, Yusuf N. Ultraviolet radiation biological and medical implications. Curr Issues Mol Biol. 2024; 46(3):1924-42.https://doi.org/10.3390/cimb46030126.
  2.                 Kaur K, Ai R, Perry AG, Riley B, Roberts EL, Montano EN, et al. Skin cancer risk is increased by somatic mutations detected noninvasively in healthy-appearing sun-exposed skin. J Invest Dermatol. 2024; 144(10): 2187-2196.e13. https://doi.org/10.1016/j.jid. 2024.02.017.
  3. Safapour S, Shabbir M, Rather LJ, Assiri MA. Cleaner sustainable route to develop UV protective and colorful wool yarns: natural flavonoid-based colorants from millettia laurentti sawdust. Prog Color Colorant Coat. 2024;17(4):351-63. https://doi.org/10.1016/j. jid. 2024.02.017.
  4. Amnuaikit T, Boonme P. Formulation and characteri-zation of sunscreen creams with synergistic efficacy on SPF by combination of UV filters. J Appl Pharm Sci. 2013;3(8):1-5. https://doi.org/10.1016/j.jid.2024. 02.017.
  5. Sharma N, Srivastava S, Singh A, Sheikh J. Novel route for dyeing of cotton with turmeric for imparting mosquito repellent and UV protection properties. Prog Color Colorant Coat. 2024; 17(3): 289-96. https://doi. org/10.1016/j.jid.2024.02.017.
  6. Musa KM, Alshemary KKH. The role of nanoparticles in sunscreen: UV protection and particle size. Int Acad J Sci Eng. 2024;11(1):153-64. https://doi.org/10. 9756/iajse/v11i1/iajse1118.
  7. Ahmad Zaki NA, Mahmud S, Fairuz Omar A. Ultraviolet Protection Properties of Commercial Sunscreens and Sunscreens Containing Zno Nanorods. J Phys Conf Ser. 2018; 1083(1): 12012. . https://doi.org/10.1088/1742-6596/1083/1/012012.
  8. Wenyue Z, Rajesh Ramanathan SU. Sunscreen testing: A critical perspective and future roadmap. TrAC Trends Anal Chem. 2022; 157: 116724. https://doi.org/10.1016/j.trac.2022.116724.
  9. Rigano L, Mezzanotte A, Lohman M, Kujansivu L. Hydrogenated polydecanes and high SPF physical sunscreens. Cosmetics & Toiletries. 2015; 79-85.
  10. Wright PFA. Realistic exposure study assists risk assessments of ZnO nanoparticle sunscreens and allays safety concerns. J Invest Dermatol. 2019; 139(2): 277–8. https://doi.org/10.1016/j.jid. 2018.09. 014.
  11. Reinosa JJ, Docio CMÁ, Ramírez VZ, Lozano JFF. Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens. Ceram Int. 2018; 44(3): 2827-34. https://doi.org/10.1016/j.jid.2018.09.014.
  12. Ilić K, Selmani A, Milić M, Glavan TM, Zapletal E, Ćurlin M, et al. The shape of titanium dioxide nanomaterials modulates their protection efficacy against ultraviolet light in human skin cells. J Nanoparticle Res. 2020; 22(3): 1-13. https://doi.org/ 10.1007/s11051-020-04791-0.
  13. Lin CH, Lin MH, Chung YK, Alalaiwe A, Hung CF, Fang JY. Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. Chemosphere. 2024; 347: 140702. https://doi.org/10.1016/j.chemosphere.2023. 140702.
  14. Bernstein EF, Sarkas HW, Boland P. Iron oxides in novel skin care formulations attenuate blue light for enhanced protection against skin damage. J Cosmet Dermatol. 2021;20(2):532-537. https://doi.org/10. 1111/jocd.13803.
  15. Schneider SL, Lim HW. A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol Photoimmunol Photomed. 2019;35(6):442–6. https:// doi.org/10.1111/phpp.12439.
  16. Jafari H, Khajeh Mehrizi M, Fattahi S. The effect of inorganic nanoparticles on camouflage properties of cotton/polyester fabrics. Prog Color Colorant Coat. 2016;9(1):29-40. https://doi.org/10.30509/ pccc.2016. 75872.
  17. Le Thi Nhu Ngoc VVTO, Ju-Young M, Minhe C, Duckshin YCL. Recent trends of sunscreen cosmetic: an update review, Cosmetics, 2019;6(4):64. https://doi.org/10.3390/COSMETICS6040064.
  18. Sagadevan S, Imteyaz S, Murugan B, Anita Lett J, Sridewi N, Weldegebrieal GK, et al. A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process Synth. 2022; 11(1):44–63. https://doi.org/10.3390/COSMETICS6040064.
  19. Wang J, Wang Z, Wang W, Wang Y, Hu X, Liu J, et al. Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale. 2022; 6709-34. https://doi.org/10.1039/d1nr08349j.
  20. Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol Sci Appl. 2011; 4(1): 95-112. https://doi.org/10.2147/nsa.s19419.
  21. Haratian Nezhad E, Haratizadeh H, Mohammad Kari B. Influence of thickness and number of silver layers in the electrical and optical properties of ZnO/Ag/ZnO/Ag/ZnO ultra-thin films deposited on the glass for low-emissivity applications. Prog Color Colorant Coat. 2019;12(2):83-91. https://doi.org/10. 30509/pccc.2019.81543.
  22. Asadi F, Jannesari A, Arabi AM. Synthesis and characterization of well-dispersed zinc oxide quantum dots in epoxy resin using epoxy siloxane surface modifier. Prog Color Colorant Coat. 2023; 16(4): 399-408. https://doi.org/10.30509/pccc.2023.167118.1210.
  23. Díaz-Reyes J, Martínez-Juárez J, Galeazzi R, Juárez-Díaz G, Galván-Arellano M, Rodríguez-Fragoso P, E. Lopez-Cruz. Structural and optical characterization of ZnO layers grown by chemical bath deposition activated by means microwaves. In: Frazao O, editor. Proceedings of the 3rd WSEAS international conference on Advances in sensors, signals and materials; 2010 Nov 3-5; Faro, Portugal. Stevens Point, Wiscons, United States: World Scientific and Engineering Academy and Society (WSEAS) 2010. p. 105-109.
  24. Vaudagna MV, Aiassa V, Marcotti A, Pince Beti MF, Constantín MF, Pérez MF, et al. Titanium Dioxide Nanoparticles in sunscreens and skin photo-damage. Development, synthesis and characterization of a novel biocompatible alternative based on their in vitro and in vivo study. J Photochem Photobiol. 2023; 15: 100173. https://doi.org/10.1016/j.jpap.2023.100173.
  25. Wang X. The comparison of titanium dioxide and zinc oxide used in sunscreen based on their enhanced absorption. Appl Comput Eng. 2023; 24(1): 237-45. https://doi.org/10.54254/2755-2721/24/20230715.
  26. Ruocco V, Morganti P, Wolf D WR. Sunscreens. Clin Dermatol. 2001;19(4):452-459. https://doi.org/10. 1016/s0738-081x(01)00190-0.
  27. Ann LC, Mahmud S, Seeni A, Bakhori SKM, Sirelkhatim A, Mohamad D, Hasan H. Structural morphology and in vitro toxicity studies of nano- and micro-sized zinc oxide structures. J Environ Chem Eng. 2015;3(1):436-44. https://doi.org/10.1016/j. jece. 2014.12.015.
  28. Agarwal S, Jangir LK, Rathore KS, Kumar M, Awasthi K. Morphology-dependent structural and optical properties of ZnO nanostructures. Appl Phys A. 2019;125(8):553. https://doi.org/10.1016/j.jece. 2014. 12.015.
  29. Davis K, Yarbrough R, Froeschle M, White J, Rathnayake H. Band gap engineered zinc oxide nanostructures: Via a sol-gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 2019;9(26):14638-48. https://doi.org/10.1039/c9ra 02091h.
  30. Mishra SK, Srivastava RK, Prakash SG. ZnO nano-particles: Structural, optical and photoconductivity characteristics. J Alloys Compoun. 2012;539:1-6. https://doi.org/10.1016/j.jallcom.2012.06. 024.
  31. Hull MS, Bowman DM, Nanotechnology environ-mental health and safety. risks, regulation, and management, 3rd ed., Elsevier B.V, 2019. https://doi. org/10.1016/C2016-0-04525-4.
  32. Butler H. Poucher’s Perfumes, Cosmetics and Soaps. 10th ed. Butler H, editor. London: Kluwer Academic Publishers; 2000. 628–635. https://doi.org/10.1007/ 978-94-017-2734-1
  33. Pinnell SR, Fairhurst D, Gillies R, Mitchnick MA, Kollias N. Microfine zinc oxide is a superior sunscreen ingredient to microfine titanium dioxide. Dermatol Surg. 2000; 26: 309-14. https://doi.org/10. 1046/j.1524-4725.2000.99237.x.  
  34. Afshar FTP, Ramezanian N, Behzadpour M. Identification and evaluation of replaced materials of titanium dioxide pigment in alkyd resins and investigation of their properties. Prog Color Colorant Coat. 2020; 13(3):167-75. https://doi.org/10.30509/ pccc. 2020.81627.
  35. Caswell M. Sunscreen formulation and testing. Allured’s Cosmetics & Toiletries. 2001 Sep;116(9):49- 60. https://doi.org/0361-4387/01/0009-0049$05.00/ 0.
  36. Goh EG, Xu X, McCormick PG. Effect of particle size on the UV absorbance of zinc oxide nano-particles. Scr Mater. 2014;78-79:49-52. https://doi. org/10.1016/j.scriptamat.2014.01.033.
  37. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doǧan S, et al. A comprehensive review of ZnO materials and devices. J Appl Phys. 2005; 98(4): 1- https://doi.org/103. 10.1063/1.1992666.
  38. Antony Lilly Grace M, Veerabhadra Rao K, Anuradha K, Judith Jayarani A, Arun kumar A, Rathika A. X-ray analysis and size-strain plot of zinc oxide nanoparticles by Williamson-Hall. Mater Today Proc. 2023;92:1334–9; https://doi.org/10.1016/j. matpr. 2023.05.492.
  39. Mohan AC, Renjanadevi B. Preparation of Zinc Oxide Nanoparticles and its Characterization Using Scanning Electron Microscopy (SEM) and X-Ray Diffraction(XRD). Procedia Technol. 2016; 24: 761–766. https://doi.org/10.1016/j.protcy.2016.05.078.
  40. Bulcha B, Leta Tesfaye J, Anatol D, Shanmugam R, Dwarampudi LP, Nagaprasad N, et al. Synthesis of Zinc Oxide Nanoparticles by Hydrothermal Methods and Spectroscopic Investigation of Ultraviolet Radiation Protective Properties. J Nanomater. 2021 Jan 1;2021(1):8617290. https://doi.org/10. 1155/2021/ 8617290.
  41. Bajpai G, Moirangthem I, Sarkar S, Barman SR, Vinod CP, Bajpai S, et al. Role of Li+ and Fe3+ in modified ZnO: Structural, vibrational, opto-electronic, mechanical and magnetic properties. Ceram Int. 2019;45(6):7232-43. https://doi.org/10.1016/j. ceramint. 2019. 01.004.
  42. Maru AD, Lahoti SR. Formulation and evaluation of moisturizing cream containing sunflower wax, Nternational J Pharm Pharm Sci. 2018; 10(11): 54-59 https://doi.org/10.22159/ijpps.2018v10i11.28645.
  43. Eros I, Kónya IM, Csóka M. Study of the structure of coherent emulsions. Int J Pharm. 2003; 256: 75-84. https://doi.org/10.1016/S0378-5173(03)00064-4.
  44. Gaska K, Xu X, Gubanski RK. Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process. Polymers (Basel). 2017; 9(11). https://doi.org/10.3390/polym9010011.
  45. Maryanti. EETES. Determination Of SPF (Sun Protection Factor) Values And Evaluation Of Sunscreen Cream With ZnO and TiO2 Nanoparticles Combination In Vitro As Active Ingredients. 2019. https://doi.org/10.1590/S1516-93322004000300014.
  46. Dutra EA, Da Costa E Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev Bras Ciencias Farm J Pharm Sci. 2004; 40(3): 381-5.  https://doi.org/10.1590/S1516-93322004000300014.