Structural and Optical Properties of Doped Polystyrene Thin Films by (NiO, TiO2, ZnO, MgO) Nanoparticles

Document Type : Original Article

Authors

1 Chemistry Department, College of Science, Mustansiriyah University, P.O. Box: 14022, Baghdad, Iraq

2 Polymer Research Unit, College of Science, Mustansiriyah University, P.O. Box: 14022, Baghdad, Iraq

Abstract

This study aims to fabricate polystyrene-based nanocomposite thin films with improved optical, dielectric, and photostability properties to address challenges in optoelectronic and photonic applications, especially in extreme environments. The casting process included the incorporation of doped nanoparticles, specifically ZnO, TiO₂, NiO, and MgO, into polystyrene. Thin films were produced with a consistent concentration of 5 g of polystyrene, incorporating 0.01 g of different nanomaterials. UV-Visible spectroscopy was employed to analyze the samples across a wavelength range of 200-1100 nm, assessing oscillator strength, optoelectronic properties, and optical characteristics. All nanocomposite films demonstrated enhanced reflectance and transmittance, alongside improved optoelectronic properties, such as high-frequency dielectric performance and effective mass. These films improve photostability in the presence of UV radiation and harsh environmental conditions, rendering them appropriate for undersea, aeronautical, and aerial transport applications. They also provide potential for UV radiation shielding and have applications in light-emitting diodes, laser sensors, memory devices, and light-harvesting systems.

Keywords

Main Subjects


  1. Gaabour LH. Effect of addition of TiO2 nanoparticles on structural and dielectric properties of poly-styrene/polyvinyl chloride polymer blend. AIP Adv. 2021;11(10):1-9. https://doi.org/10.1063/5. 0062445.
  2. Alam MA, Arif S, Shariq M. Enhancement in mechanical properties of polystyrene-ZnO nano-composites. Int J Innov Res Adv Eng. 2015; 6(2): 122-9.
  3. Almara R, Huseynova A, Musayeva N. Comprehensive analysis of ZnO-doped polystyrene nanocomposites: structural, optical and defect analysis. J Thermoplast Compos Mater. 2024. https://doi.org/10.1177/08927057241291794.
  4. Iulianelli GCV, David GDS, dos Santos TN, Sebastião PJO, Tavares MIB. Influence of TiO2 nanoparticle on the thermal, morphological and molecular characteristics of PHB matrix. Polym Test. 2018; 65:156-62.
  5. Cazan C, Enesca A, Andronic L. Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites. Polymers (Basel). 2021;13(12):2017. https://doi.org/10.3390/polym13122017
  6. Khodair ZT, Ibrahim NM, Kadhim TJ, Mohammad AM. Synthesis and characterization of nickel oxide (NiO) nanoparticles using an environmentally friendly method, and their biomedical applications. Chem Phys Lett. 2022; 797:139564. https://doi.org/10.1016/ j. cplett.2022.139564
  7. Giorgio G, Maddalena P. Optical Properties of Materials. 2005;183-91. https://doi.org/10.1016/B978-0-12-803581-8.01184-X.
  8. Jebur QM, Hashim A, Habeeb MA. Structural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans Electr Electron Mater. 2019;20(4):334-43. https://doi.org/10.1007/s42341-019-00121-x
  9. Abdel-Kader MH, Alhazime AA, Mohamed MB. Tailoring the optical properties (linear and nonlinear) of triple-blended polymers via reinforcement of mixed (SnO2 and NiO) nanofillers for promising applications. Opt Quantum Electron. 2023;55(11): 1029. https://doi.org/10.1007/s11082-023-05266-x
  10. Kumar V, Ayoub I, Sharma V, Swart HC, editors. Optical properties of metal oxide nanostructures. Berlin: Springer; 2023.
  11. Alsaad AM, Al-Bataineh QM, Ahmad AA, Jum’h I, Alaqtash N, Bani-Salameh AA. Optical properties of transparent PMMA-PS/ZnO NPs polymeric nano-composite films: UV-shielding applications. Mater Res Express. 2020;6(12):126446. https://doi.org/10. 1088/ 2053-1591/ab68a0.
  12. Ahmed DS, Mohammed A, Husain AA, El-Hiti GA, Kadhom M, Kariuki BM, et al. Fabrication of highly photostable polystyrene films embedded with organometallic complexes. Polymers. 2022;14(5): 1024. https://doi.org/10.3390/polym14051024.
  13. Baysal T, Noor N, Demir A. Nanofibrous MgO composites: structures, properties, and applications. Polym Plast Technol Mater. 2020; 59(14):1522-51. https://doi.org/10.1080/25740881.2020.1759212.
  14. Sharma A, Karthikeyan B. Optical and sign-flipping nonlinear optical properties of NiO/PMMA/PANI nanocomposite films. Opt Mater. 2024;116297. https://doi.org/10.1016/j.optmat.2024.116297.
  15. Nguyen TV, Dao PH, Duong KL, Duong QH, Vu QT, Nguyen AH, et al. Effect of R-TiO2 and ZnO nanoparticles on the UV-shielding efficiency of water-borne acrylic coating. Prog Org Coat. 2017; 110:114-21. https://doi.org/10.1016/j.porgcoat.2017.02.017.
  16. Dolai S, Sarangi SN, Hussain S, Bhar R, Pal AK. Magnetic properties of nanocrystalline nickel incorporated CuO thin films. J Magn Magn Mater. 2019; 479:59-66. https://doi.org/10.1016/j.jmmm. 2019.02.005
  17. Al-Mahweet Y. Physicochemical properties of prepared ZnO/polystyrene nanocomposites: structure, mechanical and optical. J Ovonic Res. 2020;16(1):71–81.
  18. Pepe Y, Karatay A, Donar YO, Yildiz EA, Sınağ A, Unver H, Elmali A. Enhanced nonlinear absorption coefficient and low optical limiting threshold of NiO nanocomposite films. Optik. 2021; 227:165975. https://doi.org/10.1016/j.ijleo.2020.165975.
  19. Zeinali M, Jaleh B, Vaziri MR, Omidvar A. Study of nonlinear optical properties of TiO2–polystyrene nanocomposite films. Quantum Electron. 2019; 49(10):951. https://doi.org/10.1070/QEL16923.
  20. Tu Y, Zhou L, Jin YZ, Gao C, Ye ZZ, Yang YF, et al. Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. J Mater Chem. 2010; 20(8):1594-9. https://doi.org/10.1039/B914156A.
  21. Dong L. Optical properties of nanoparticles in composite materials [dissertation]. Stockholm: KTH Royal Institute of Technology; 2012.
  22. Olson E, Li Y, Lin FY, Miller A, Liu F, Tsyrenova A, et al. Thin biobased transparent UV-blocking coating enabled by nanoparticle self-assembly. ACS Appl Mater Interfaces. 2019; 11(27):24552-9. https://doi. org/10.1021/acsami.9b05383
  23. Sharma T, Garg M. Polystyrene/ZnO nanocomposite films with optimized optical properties for UV-shielding applications. Trans Electr Electron Mater. 2023; 24(3):217-27. https://doi.org/10.1007/s42341-023-00437-9.
  24. Hassanien AS, Akl AA. Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J Alloys Compd. 2015; 648:280-90. https://doi.org/ 10.1016/j.jallcom.2015.06.231.
  25. Ji L, Liu L, Li H, Ji Y. The molecular design and characterization of a transparent and flexible TiO2/ polymer nanocomposite with antibacterial and anti-UV light properties. J Polym Res. 2023;30(4):149. https://doi.org/10.1007/s10965-023-03530-y.
  26. Kudryashov A, Baryshnikova S, Gusev S, Tatarskiy D, Lukichev I, Agareva N, et al. UV-induced gold nanoparticle growth in polystyrene matrix with soluble precursor. Photonics. 2022;9(10):776. https://doi.org/10.3390/photonics9100776.
  27. Ritchie AW, Cox HJ, Gonabadi HI, Bull SJ, Badyal JPS. Tunable high refractive index polymer hybrid and polymer–inorganic nanocomposite coatings. ACS Appl Mater Interfaces. 2021;13(28):33477-84. https://doi.org/10.1021/acsami.1c08612.
  28. Cheng Y, Lu C, Yang B. A review on high refractive index nanocomposites for optical applications. Recent Pat Mater Sci. 2011;4(1):15-27. https://doi.org/10. 2174/1874464811104010015.
  29. Hassanien AS, Akl AA. Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl Phys A. 2018;124(11):752. https://doi.org/10.1007/ s00339-018-2130-0.
  30. Yang C, Fan H, Xi Y, Chen J, Li Z. Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation. Appl Surf Sci. 2008;254(9):2685-9. https://doi.org/10.1016/j. apsusc. 2007.10.034.
  31. Al-Bataineh QM, Alsaad AM, Ahmad AA, Al-Sawalmih A. Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol–gel method versus ab initio calculations. J Electron Mater. 2019; 48:5028-38. https://doi.org/10.1007/s11664-019-07245-0.
  32. Loste J, Lopez-Cuesta JM, Billon L, Garay H, Save M. Transparent polymer nanocomposites: an overview on their synthesis and advanced properties. Prog Polym Sci. 2019; 89:133-58. https://doi.org/ 10. 1016/j.progpolymsci.2018.10.001.
  33. Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng C. 2016; 60:195-203. https://doi.org/10.1016/j.msec. 2015.11. 023
  34. Hewa-Rahinduwage CC, Jayasuriya AC. Polymer nanocomposites with ZnO nanoparticles for bone tissue engineering. Polym Plast Technol Eng. 2020; 59(12):1362-76. https://doi.org/10.1080/ 03602559. 2020.1785790.
  35. Horst A, Amberg-Schwab S, Organisch-M, Schroers H. Properties and applications of highly transparent glass coatings for UV protection and light management. Thin Solid Films. 2023; 561:10903–18.
  36. Kusior K, Jaworski A, Mazur M. Deposition and morphology of thin composite coatings for optical purposes. Appl Phys A. 2018;124(4):186. https://doi. org/10.1007/s00339-018-1670-0.
  37. Hoffmann SC, Hildgen P. Synthesis of ZnO-filled polystyrene for optical electronics. Opt Mater. 2014; 46:25-31. https://doi.org/10.1016/j.optmat.2014.03. 021.
  38. Takai C, Osawa M, Kawai T. Polymer dispersed hybrid optics: Design methods. J Alloys Compd. 2021; 854:15593–9.
  39. Basak U, George BP. Zinc-based nano hybrids for anti-bacterial multilayer films. Prog Polym Sci. 2020; 104:20015–34.
  40. Nisar S, Iqbal R, Latif N. Titanium-doped nanocoating: engineering brilliance. Optics Express. 2019;28(10):15091–107. https://doi.org/10.1016/10. 1364/OE.384905
  41. Zayed F. Simplified suspension spraying technology. J Mater Sci Mater Electron. 2022; 30(17):15254-60.
  42. Yılmaz M, Koltsov AE. Enhanced light-blocking material studies. Mater Today. 2013;16(5):168-72.
  43. Sharma T, Garg M. Polystyrene/ZnO nanocomposite films with optimized optical properties for UV-shielding applications. Trans Electr Electron Mater. 2023;24(3):217-27. https://doi.org/10.1016/10. 1007/ s42341-023-00437-9
  44. Hassanien AS, Akl AA. Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J Alloys Compd. 2015; 648:280-90. https://doi.org/10. 1016/j.jallcom.2015.06.231.
  45. Ji L, Liu L, Li H, Ji Y. The molecular design and characterization of a transparent and flexible TiO2/polymer nanocomposite with antibacterial and anti-UV light properties. J Polym Res. 2023; 30(4):149. https://doi.org/10.1016/10.1007/ s10965- 023-03147-0.
  46. Kudryashov A, Baryshnikova S, Gusev S, Tatarskiy D, Lukichev I, Agareva N, et al. UV-induced gold nanoparticle growth in polystyrene matrix with soluble precursor. Photonics. 2022;9 (10):776. https://doi.org/10.1016/10.3390/photonics9100776.
  47. Ritchie AW, Cox HJ, Gonabadi HI, Bull SJ, Badyal JPS. Tunable high refractive index polymer hybrid and polymer–inorganic nanocomposite coatings. ACS Appl Mater Interfaces. 2021;13(28):33477-84. https://doi.org/10.1016/10.1021/acsami.1c08656.
  48. Cheng Y, Lu C, Yang B. A review on high refractive index nanocomposites for optical applications. Recent Pat Mater Sci. 2011; 4(1):15-27. https://doi.org/ 10.1016/10.2174/221279711795049017.
  49. Hassanien AS, Akl AA. Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl Phys A. 2018; 124(11):752. https://doi.org/ 10. 1016/ 10.1007/s00339-018-2121-0.
  50. Yang C, Fan H, Xi Y, Chen J, Li Z. Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation. Appl Surf Sci. 2008; 254 (9):2685-9. https://doi.org/10.1016/10.1016/j. apsusc. 2007.10.029
  51. Al-Bataineh QM, Alsaad AM, Ahmad AA, Al-Sawalmih A. Structural, electronic, and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol–gel method versus ab initio calculations. J Electron Mater. 2019; 48:5028-38. https://doi.org/10.1016/10.1007/s11664-019-07347-2.