Polyaniline-CdSe Quantum Dot Nanostructure: Characterization and Properties

Document Type : Original Article

Authors

1 Department of Inorganic Pigments and Glaze, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

2 Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

Abstract

This research focuses on the synthesis of cadmium selenide quantum dots (CdSe QDs)-polyaniline (PANI) nanocomposites. CdSe QDs were prepared by co-precipitation, and the polymerization process was carried out in the presence of QDs to form an entangled nanocomposite. Structural analysis of the sample revealed the formation of the main PANI peaks along with an amorphous QDs. Chemical analysis confirmed the successful polymerization of PANI and the formation of QD nanoparticles. The thermal behavior of PANI samples with and without QDs showed similar weight loss steps with less weight loss in the presence of PANI, indicating increased thermal stability of the nanocomposite. The microstructure of PANI showed an entangled, coil-like nanorod morphology. Due to this cross-linked structure and the polymerization process, QDs formed as amorphous particles with a uniform distribution within this ordered structure. Structural and microstructural studies emphasized the presence of NaCl impurity. The optical behavior of CdSe QDs synthesized at different temperatures from 70 to 100 °C showed that increasing the temperature shifts the emission to lower energy regions. The emission spectrum of the composite sample showed that the blue emission peak at around 420 nm is due to the π-π* electronic transition in polyaniline. With increasing the QD concentration to 10 % by weight relative to polyaniline, the formation of green emission spectrum of QDs due to the electronic transition between these two luminescent centers reduced its intensity. These results indicate that due to the proper entanglement, the obtained product can be a suitable candidate for electroluminescent applications.

Keywords

Main Subjects


  1. Manna L. The bright and enlightening science of quantum dots. Nano Lett. 2023; 23(21): 9673-76. https://doi.org/10.1021/acs.nanolett.3c03904.
  2. Cotta MA. Quantum dots and their applications: what lies ahead?. ACS Appl Nano Mater. 2018;3(6): 4920-24. https://doi.org/10.1021/acsanm.0c01386.
  3. Bera D, Qian L, Tseng TK, Holloway PH. Quantum Dots and Their Multimodal Applications: A Review. Materials. 2010;3(4):2260-2345. https://doi.org/10. 3390/ma3042260.
  4. Agarwal K, Rai H, Mondal S. Quantum dots: an overview of synthesis, properties, and applications. Mater Res Express. 2023; 10(6):062001. https://doi. org/10.1088/2053-1591/acda17.
  5. Gidwani B, Sahu V, Shukla SS, Pandey R, Joshi V, Jain VK, et al. Quantum dots: Prospective, toxicity, advances and applications. J Drug Deliv Sci Tec. 2021;61:102308. https://doi.org/10.1016/j.jddst. 2020. 102308.
  6. Asadi F, Jannesari A, Arabi AM. Synthesis and Characterization of Well-dispersed Zinc oxide quantum dots in epoxy resin using epoxy siloxane surface modifier. Prog Color, Colorants Coat. 2023; 16(4): 399-408. https://doi.org/10. 30509/pccc.2023. 167118.1210.
  7. Kausar A. Polyaniline and quantum dot-based nanostructures: developments and perspectives. J Plast Film Sheet. 2020;36(4):430-447. https://doi.org/ 10. 1177/8756087920926649.
  8. Kehlbeck JD, Hagerman ME, Cohen BD, Eliseo J, Fox M, Hoek W, et al. Directed self-assembly in laponite/CdSe/polyaniline nanocomposites. Langmuir. 2008;24(17):9727-38. https://doi.org/10.1021/la800 953w.
  9. Patidar D, Jain N, Saxena NS, Sharma K, Sharma. Electrical Properties of CdS/Polyaniline Hetero-junction. Braz J Phys. 2006;36(4):1210-12. https://doi.org/10.1590/S0103-97332006000700016.
  10. Yadav A, Kumar H, Sharma R, Kumari R, Thakur M. Quantum dot decorated polyaniline plastic as a multifunctional nanocomposite: experimental and theoretical approach. RSC Adv. 2022, 12(37), 24063-76.https://doi.org/10.1039/d2ra03554.
  11. Mehare MD, Deshmukh AD, Dhoble SJ. Carbon quantum dots/polyaniline nanocomposite (S-CQD/ PANI) for high capacitive asymmetric supercapacitor device. J Nanosci Nanotechnol. 2020; 20(6):3785-94. https://doi.org/10.1166/jnn.2020. 17778.
  12. Ganganboina AB, Doong RA. Graphene quantum dots decorated gold-polyaniline nanowire for impedimetric detection of carcinoembryonic antigen. Sci Rep. 2019;9:7214. https://doi.org/10.1038/s41598- 019-43740-3.
  13. Shokry A, Khalil MMA, Ibrahim H, Soliman M, Ebrahi S. Highly luminescent ternary nano-composite of polyaniline, silver nanoparticles and graphene oxide quantum dots. Sci Rep. 2019;9: 16984. https://doi.org/ 10.1038/s41598-019-53584-6.
  14. Rabia M, Mohamed HSH, Shaban M, Taha S. Preparation of polyaniline/PbS core-shell nano/ microcomposite and its application for photo-catalytic H2 electrogeneration from H2O. Sci Rep. 2018; 8: 1107. https://doi.org/10.1038/s41598-018-19326-w.
  15. Ahilfi DN, Alkabbi AS, Mohammed KA, Ziadan KM. Fabrication and characterization of polyaniline/ cdse device for applications in nano structured solar cells. IOP Conf Ser: Mater Sci Eng. 2020; 928(7): 072069. https://doi.org/10.1088/1757-899X/ 928/7/ 072069.
  16. Xu D, Yang M, Liu Y, Zhu R, Lv X, Zhang C, et al. Fabrication of an innovative designed TiO2 nanosheets/CdSe/polyaniline/graphene quaternary composite and its application as in-situ photocathodic protection coatings on 304SS. J Alloy Compd. 2020; 822: 153685. https://doi.org/10.1016/j.jallcom.2020. 153685.
  17. Xu L, Huang X, Dai W, Sun P, Chen X, An L. Charge and energy transfer between cdse quantum dots and polyaniline. J Nanosci Nanotechnol. 2016;16 (4):3909-13. https://doi.org/10.1166/jnn.2016. 11851.
  18. Abdul-Manaf NA, Echendu OK, Fauzi F, Bowen L, Dharmadasa IM. Development of polyaniline using electrochemical technique for plugging pinholes in cadmium sulfide/cadmium telluride solar cells. J Electron Mater. 2014; 43(9):4003–10. https://doi. org/10.1007/s11664-014-3361-5.
  19. Shieh YT, Lu YT, Wang TL, Yang CH, Lin RH. Electrocatalytic activities of Nafion/CdSe/Self-doped polyaniline composites to dopamine, uric acid, and ascorbic acid. J Solid State Electrochem. 2014; 18: 975–984. https://doi.org/10.1007/s10008-013-2344-4.
  20. Karimi B, Shafiee Afarani M, Arabi AM. Hydrothermal synthesis of cadmium selenide quantum dots: effect of reducing agent. Appl Phys A. 2020; 126, 706. https://doi.org/10.1007/s00339-020-03903-w.
  21. Mahmoodi NM, Oveisi M, Arabi AM, Karimi B. Cadmium selenide quantum dots: synthesis, characterization, and dye removal ability with UV irradiation. Desalin Water Treat. 2015; 57(35), 16552–58. https://doi.org/10.1080/19443994.2015.1079259.
  22. Haldorai Y, Nguyen VH, Shim JJ. Synthesis of polyaniline/Q-CdSe composite via ultrasonically assisted dynamic inverse emulsion polymerization. Colloid Polym Sci. 2011;289:849–854. https://doi.org/ 10.1007/s00396-011-2400-5.
  23. Mostafaei A, Zolriasatein A. Synthesis and characterization of conducting polyaniline nano-composites containing ZnO nanorods. Prog Nat Sci-Mater. 2012;22(4):273-280. https://doi.org/10.1016/j. pnsc.2012.07.002
  24. Hamizi NA, Ying CS, Johan MR. Synthesis with different se concentrations and optical studies of cdse quantum dots via inverse micelle technique. Int J Electrochem Sc. 2012;7(5),4727-34. https://doi.org/ 10.1016/S1452-3981(23)19577-0.
  25. Vo NT, Ngo HD, Vu DL, Duong AP, Lam QV. Conjugation of E. coli O157:H7 Antibody to CdSe/ZnS Quantum Dots. J Nanomater. 2015; 1, 265315. https://doi.org/10.1155/2015/265315.
  26. Shao W, Jamal R, Xu F, Ubul A, Abdiryim T. The effect of a small amount of water on the structure and electrochemical properties of solid-state synthesized polyaniline. Mater. 2015;5(10);1811-1825. https://doi. org/10.3390/ma5101811.
  27. Bhadra S, Khastgir D. Glass–rubber transition temperature of polyaniline: Experimental and molecular dynamic simulation. Synthetic Met, 2009;159(12): 1141-1146. https://doi.org/10.1016/j. synthmet.2009.01.052.
  28. Alves WF, Malmonge JA, Mattoso LH, Medeiros ES. Non-isothermal decomposition kinetics of conductive polyaniline and its derivatives. Polímeros. 2018;28 (4):285-92. https://doi.org/10.1590/0104-1428. 03116.
  29. Kumar A, Kumar A, Mudila H, Kumar V. Synthesis and thermal analysis of polyaniline (PANI). J. Phys.: Conf. Ser. 2020;1531(1):012108. https://doi.org/10. 1088/1742-6596/1531/1/012108.
  30. Chao D, Chen J, Lu X, Chen L, Zhang W, Wei Y. SEM study of the morphology of high molecular weight polyaniline. Synthetic met. 2005;150(1):47-51. https://doi.org/10.1016/j.synthmet.2005.01.010.
  31. Sedaghat S, Golbaz F. In situ oxidative polymerization of aniline in the presence of manganese dioxide and preparation of polyaniline/ MnO2 nanocomposite. J Nanostruct Chem. 2013;3:65. https://doi.org/10.1186/2193-8865-3-65.
  32. Freitas TV, Sousa EA, Fuzari Jr GC, Arlindo EP. Different morphologies of polyaniline nanostructures synthesized by interfacial polymerization. Mater Let. 2018; 224: 42-5. https://doi.org/10.1016/j.matlet.2018. 04.062.
  33. Sun Q, Fu S, Dong T, Liu S, Huang C. Aqueous synthesis and characterization of TGA-capped CdSe quantum dots at freezing temperature. Molecules. 2012; 17(7):8430-8. https://doi.org/10.3390/molecules 17078430.
  34. Ahmed SU, Akter F, Oliullah MD, Chowdhury MSH, Talukder MDM, Pramanik SK, et al. Role of reaction time on the electrical conductivity, thermal stability and photoluminescence property of polyanilne nanofibers. Int J Chem React Eng. 2020; 18(1): 20190088. https://doi.org/10.1515/ijcre-2019-0088. 
  35. Landry ML, Morrell TE, Karagounis TK, Hsia CH, Wang CY. Simple syntheses of CdSe quantum dots. J Chem Educ. 2014; 91(2), 274–279. https://doi.org/ 10.1021/ed300568e.