Polyaniline and Its Role on Thermal Stability, Viscoelastic Behavior and Electrical Conductivity of UV Curable Epoxy Resin

Document Type : Original Article

Authors

1 Technical Faculty, South Tehran Branch, Islamic Azad University, P.O. Box: 11365-4435, Tehran, Iran

2 Department of Biomaterial, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box: 14975-112, Tehran, Iran

3 Department of Resin and Additives, Institute for Color Science and technology, P.O. Box: 16765-654, Tehran, Iran

Abstract

Ultraviolet (UV) curing systems have garnered significant attention and scholarly focus due to their remarkable ability to facilitate rapid curing processes while simultaneously exhibiting low energy consumption characteristics, which are increasingly pertinent in contemporary manufacturing and environmental sustainability discussions. The aim of this study is investigating the multifaceted role that polyaniline in UV-curable epoxy acrylate coatings. Both polyaniline and epoxy acrylate resin were synthesized through established chemical processes and subsequently characterized using a range of analytical techniques. To assess the impact of polyaniline on the epoxy acrylate resin, varying percentages of polyaniline, specifically at concentrations of 1, 3, and 5 %, were systematically incorporated into the epoxy acrylate resin matrix to evaluate their effects on the resultant material properties. A detailed analysis of the morphological characteristics of the prepared nanocomposites revealed a well-distributed and appropriate dispersion of polyaniline particles throughout the polymer matrix, which is crucial for achieving optimal performance in the final product. Thermal stability of the sample containing 3 % polyaniline exhibited a remarkable enhancement, being twice as high when compared to the sample that contained only 1 % polyaniline, thus highlighting the significance of polyaniline concentration on thermal properties. Furthermore, it was observed that the electrical conductivity of the sample incorporating 3 % polyaniline experienced a substantial increase, quantified at an impressive factor of 4.25 times greater than that of the sample with a lower concentration of 1 %, underscoring the enhanced electrical performance attributable to the optimized incorporation of polyaniline within the epoxy acrylate matrix. 

Keywords

Main Subjects


  1. Abniki M, Shirkavand Hadavand B, Najafi F, Fabrication of layered hydroxide composite with polydimethylsiloxane hydroxy-terminated for epoxy resin flame retardancy. J Inorg Organomet Polym Mater. 2023; 33:1946-1954. https://doi.org/10.1007/ s10904-023-02630-y
  2. Ou B, Wang Y, Lu Y. A review on fundamentals and strategy of epoxy-resin-based anticorrosive coating materials. Polym-Plast Technol Mater.2021;60(6):601-625.https://doi.org/10.1080/25740881.2020. 1819317.
  3. Shirkavand Hadavand B, Pishvaei M, Hosseininiasari M. The role of nanoclay on surface roughness and characteristics of epoxy polysulfide nanocomposite. Prog Org Coat 2019;131:60-66. https://doi.org/10. 1016 /j. porgcoat.2019.02.024.
  4. Abniki M.; Shirkavand Hadavand B, Najafi F, Abniki M, Ghasedi I. Synthesis of the effective flame retardant via modification of epoxy resin with phenylboronic acid, J Macromol Sci - Pure Appl Chem. 2022; 59(6):411-420. https://doi.org/10.1080/ 10601325.2022.2054349.
  5. Verma C, Olasunkanmi LO, Akpan ED, Quraishi MA, Dagdag O, El Gouri M, Ebenso EE, Epoxy resins as anticorrosive polymeric materials: A review. React Funct Polym. 2020;156:104741. https://doi.org/10. 1016/j. reactfunctpolym.2020.104741.
  6. Jouyandeh M, Ganjali MR, Shirkavand Hadavand B, Aghazadeh M, Akbari V, Shammiry F, Saeb MR. Curing epoxy with polyvinyl chloride (PVC) surface-functionalized CoxFe3-xO4 nanoparticles. Prog Org Coat. 2019; 137:105364. https://doi.org/10.1016/ j.porgcoat.2019.105364.
  7. Jouyandeh M, Rahmati N, Movahedifar E, Shirkavand Hadavand B, Karami Z, Ghaffari, M, Taheri P, Bakhshandeh E, Vahabi H, Ganjali MR, Formela K, Saeb MR. Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective. Prog Org Coat. 2019;133:220-228. https://doi.org/10.1016/j. porgcoat.2019.04.034
  8. Shirkavand Hadavand B, Hosseini H. Investigation of viscoelastic properties and thermal behavior of photocurable epoxy acrylate nanocomposites. Sci Eng Compos Mater. 2017; 24(5):691-697. https://doi.org/ 10.1515/secm-2015-0161.
  9. Xiang Q, Xiao F. Applications of epoxy materials in pavement engineering. Constr Build Mater. 2020; 235:117529. https://doi.org/10.1016/j.conbuildmat. 2019.117529.
  10. Amoozadeh P, Mohsen Sarrafi AH, Shirkavand Hadavand B, Niazi A, Konoz E. UV-curable hybrid hydrogels of carbon quantum dots: synthesis, characterizations and investigation of properties and rheological behavior. Polym-Plast Technol Mater. 2022; 61(18):2063-2072. https://doi.org/10.1080/ 25740881. 2022.2089580.
  11. Madhi A, Shirkavand Hadavand B. Tri-functional bio-friendly cross-linker for UV-curable coatings: Synthesis and study of viscoelastic properties. Prog Color Color Coat. 2021;14(3):199-207. https://doi.org/ 10.30509/pccc.2021.81713.
  12. Soleimani-Gorgani A, Najafi F, Mohammadrezaei F, Shirkavand Hadavand B. Transparent water-based UV-curable urethane acrylate ink-jet ink, Int J Polym Anal Charact. 2021; 26(3):228-239. https://doi.org/10. 1080/1023666X.2021.1876457
  13. Wang S, Wu Y, Dai J, Teng N, Peng Y, Cao L, Liu X. Making organic coatings greener: Renewable resource, solvent-free synthesis, UV curing and repairability. Eur Polym J. 2020;123:109439. https://doi.org/10.1016/j.eurpolymj.2019.109439.
  14. Shirkavand Hadavand B, Najafi F, Saeb MR, Malekian A. Hyperbranched polyesters urethane acrylate resin: A study on synthesis parameters and viscoelastic properties. High Perform Polym, 2017;29 (6):651-662. https://doi.org/10.1177/09540083176965 66.
  15. Yousefi-Limaee N, Shirkavand Hadavand B, Rahmani Z. Study the adsorption performance of methylene blue by modified UV-curable hydrogel/ chitosan nanocomposite: Isotherm and kinetics approach, Pigment Resin Technol. 2023; 52(3):341-348. https://doi.org/10.1108/PRT-04-2022-0045.
  16. Madhi A, Shirkavand Hadavand B. Bio-based UV-curable urethane acrylate graphene nanocomposites: synthesis and properties. SN Appl Sci. 2020; 2(4):1-9. https://doi.org/10.1007/s42452-020-2527-4.
  17. Madhi A, Shirkavand Hadavand B. Eco-friendly castor oil-based UV-curable urethane acrylate zinc oxide nanocomposites: Synthesis and viscoelastic behavior. J Compos Mater. 2020;54:101-110. https://doi.org/10.1177/0021998319858017.
  18. Pojnar K, Pilch-Pitera B, Patil R. Progress in the development of acrylic resin-based powder coatings–an overview. Polimery. 2024;69(3):141-158. https://doi.org/10.14314/polimery.2024.3.1.
  19. Najafi F, Shirkavand Hadavand B, Pournamdar A. Trimethoxysilane-assisted UV-curable urethane acrylate as clear coating: From synthesis to properties. Colloid Polym Sci. 2017;295:1717-1728. https://doi. org/ 10.1007/s00396-017-4139-0
  20. Mohtadizadeh F, Zohuriaan-Mehr MJ, Shirkavand Hadavand B, Dehghan A. Tetra-functional epoxy-acrylate as crosslinker for UV curable resins: Synthesis, spectral, and thermo-mechanical studies. Prog Org Coat 2015, 89, 231-239. https://doi.org/10. 1016/j.porgcoat.2015.09.002.
  21. Namsheer K, Sekhar Rout Ch. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021;11:5659-5697. https://doi.org/10.1039/D0RA07 800J.
  22. Zhu K, Li J, Wang H, Fei G. Comparative study on anticorrosion enhancement of carboxylated and sulfonated self-doped polyaniline on waterborne epoxy coating. J Macromol Sci - Pure Appl Chem. 2020;A58(4):249-261. https://doi.org/10.1080/1060 1325. 2020.1842764.
  23. Bazli L, Yusuf M, Farahani A, Kiamarzi M, Seyedhosseini Z, Nezhadmansari M, Iranpoor M. Application of composite conducting polymers for improving the corrosion behavior of various substrates: A Review. J Compos Compd. 2020;2(5): 228-240. https://doi.org/10.29252/jcc.2.4.7 .
  24. Jadoun S, Pal Singh Chauhan N, Chinnam S, Aepuru R, Sathish M, Singh Chundawat N, Rahdar A. A Short Review on Conducting Polymer Nanocomposites. Biomed Mater Devices. 2023; 1:351-365. https://doi.org/10.1007/s44174-022-00009-0.
  25. Eskandari E, Kosari MR, Davood Abadi Farahani MH, Dasineh Khiavi N, Saeedikhani M, Katal R, Zarinejad MA. Review on polyaniline-based materials applications in heavy metals removal and catalytic processes, Sep Purif Technol. 2020; 231:115901. https://doi.org/10.1016/j.seppur.2019.115901
  26. Gao F, Mu J, Bi Z, Wang S, Li Z. Recent advances of polyaniline composites in anticorrosive coatings: A review. Prog Org Coat. 2021; 151:106071. https://doi.org/10.1016/j.porgcoat.2020.106071
  27. Masum Talukder M, Mizanur Rahman Khan M, Khairul Amin M. A review on polyaniline (PANI) based nanocomposites for water purification. S Afr J Chem Eng. 2023; 44:276-282. https://doi.org/10. 1016/j. sajce.2023.02.004
  28. Rangel-Olivares FR, Arce-Estrada EM, Cabrera-Sierra R. Synthesis and characterization of polyaniline-based polymer nanocomposites as anti-corrosion coatings. Coatings, 2021; 11(6):653. https://doi.org/10.3390/coatings11060653
  29. Razak SIA, Rahman WAWA, Sharif NFA, Nayan NHM, Saidi MAA, Yahya MY. Polyaniline-coated kenaf core and its effect on the mechanical and electrical properties of epoxy resin. Compos Interfaces. 2013;20(8):611-622. https://doi.org/10. 1080/ 15685543. 2013.821019
  30. Dhawan SK; Singh N, Venkatachalam S. Shielding effectiveness of conducting polyaniline coated fabrics at 101 GHz, Synth Met. 2001; 125(3):389-393. https://doi.org/10.1016/S0379-6779(01)00478-7.
  31. Dhawan SK, Singh N, Rodrigues D. Electromagnetic shielding behaviour of conducting polyaniline composites. Sci Technol Adv Mater. 2003; 4(2):105-113. https://doi.org/10.1016/S1468-6996(02)00053-0
  32. Zhang Y, Shao Y, Liu X, Shi Ch, Wang Y, Meng G, Zeng X, Yang Y. A study on corrosion protection of different polyaniline coatings for mild steel. Prog Org Coat. 2017; 111:240-247. https://doi.org/10.1016/j. porgcoat.2017.06.015.
  33. Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN. Preparations, properties, and applications of polyaniline and polyaniline thin films-A review. Polym (Basel). 2021, 13(12):2003. doi: 10.3390/polym13122003. PMID: 34207392; PMCID: PMC8234317.
  34. Sharma N, Singh A, Kumar N, Tiwari A, Lal M, Arya, S. A review on polyaniline and its composites: From synthesis to properties and progressive applications. J Mater Sci, 59, 6206-6244 (2024). https://doi.org/10.1007/s10853-024-09562-z
  35. Belaabed B, Wojkiewicz JL, Lamouri S, El Kamchi N, Redon N. Thermomechanical behaviors and dielectric properties of polyaniline-doped para-toluene sulfonic acid/epoxy resin composites. Polym Adv Technol. 2011; 23(8):1194-1201. https://doi.org/10. 1002/pat.2029
  36. Kausar A. Versatile epoxy/polyaniline and derived nanocomposite: from strategic design to advance application. Mater Res Innov. 2021; 25(6):321-330. https://doi.org/10.1080/14328917.2020.1813452
  37. Kunju AMR, Gopalakrishnan J. Polyaniline nanorod adsorbed on reduced graphene oxide nanosheet for enhanced dielectric, viscoelastic and thermal properties of epoxy nanocomposites. Polym Eng Sci. 2021; 61(6):1755-1772. https://doi.org/10.1002/pen. 25698
  38. Chattopadhyay DK, Sankar Panda S, Raju KVSN. Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Prog Org Coat. 2005;54(1):10-19. https://doi.org/10.1016/j. porgcoat. 2004.12.007
  39. Li X, Liu X, Liu H, Liu X, He R, Meng S. Structure, morphology and anti-corrosion performance of polyaniline modified molybdenum sulfide/epoxy composite coating, Colloids Surf A, 2022; 639:128345. https://doi.org/10.1016/j.colsurfa.2022. 128345.
  40. Bashir Khan S, li N, Chen S, Liang J, Xiao C, Sun X, Influence of nanoparticle size on the mechanical and tribological characteristics of TiO2 reinforced epoxy composites, Journ Mater Res Technol, 2023:6001-6015. https://doi.org/10.1016/j.jmrt.2023.09.002.
  41. Goswami S, Nandy S, Fortunato E, Martins R. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. J Solid State Chem Part A. 2023; 317:123679. https://doi.org/10. 1016 /j.jssc.2022.123679.
  42. Wang H, Wu X, Qin X, Fei G, Sun L, Li Y, Wang M. Ultraflexible and mechanically strong polymer/ polyaniline conductive interpenetrating nano-composite via in situ polymerization of vinyl monomer. Polymers. 2021;13:2159. https://doi.org/ 10.3390/polym13132159.
  43. Krzak A, Nowak AJ, Heljak M, Antonowicz J, Garg T, Sumption M. Mechanical and thermal analysis of duroplastic matrix composites over a range of temperatures. Polymers. 2024; 16:606. https://doi.org/ 10.3390/polym16050606.
  44. Yang Y, Xian G, Li H, Sui L. Thermal aging of an anhydride-cured epoxy resin. Polym Degrad Stab. 2015;118:111-119. https://doi.org/10.1016/j.polymdeg radstab. 2015.04.017.
  45. Rahmani Z, Mousavi M, Shirkavand Hadavand B, Petrů M, Vosáhlo J, Rahimian Koloor SS. The role of urethane acrylate in improving the elasticity of nano chitosan UV-curable hydrogel nanocomposite, Nano-Struct Nano-Objects. 2024;39:101293. https://doi.org/ 10. 1016/ j.nanoso.2024.101293.