Fabrication of Solar-Driven New Composite Heterostructure CoWO4/NCW Photo catalysts for Enhanced Adsorption/Photo Degradation Activity of Organic Pollutants

Document Type : Original Article

Authors

1 Department of Chemical, Engineering, University of Muthanna, P.O. Box: 1550, Muthanna, Iraq.

2 Department of Petroleum Engineering, Al-Ayen University, P.O. Box: 64141, Thi-Qar, Iraq.

3 Department of Chemical Engineering, University of Baghdad, P.O. Box: 1417, Baghdad, Iraq

Abstract

In this work, abundant natural and industrial materials were used in concert to create a new nanocomposite made of Nano cellulose (NCW) hydrolyzed by nitric acid and cobalt tungstate (CoWO4) prepared by precipitation methods from sodium tungstate and cobalt chloride. The result was a cost-effective nanocomposite used as an adsorbent and photo-degradation with exceptional organic pollutants (OP) in refinery wastewater (RWW). This composite exhibited outstanding mechanical stability and eliminated organic pollutants (OP) by oxidation and adsorbent. All materials were comprehensively characterized through XRD, FTIR, DRS, TGA, BET, EDX, XRD, and FE-SEM analyses. A comparison was made between the nanocomposite's UV and solar light performance, considering factors like temperature, pH, time, dose, and so on. The best conditions were identified: pH levels of 8-9, time of 120 minutes, temperature of 70 °C, and dose of 1.0 g. Upon applying these optimized conditions to RWW samples, the high removal ratios were achieved: 97.4, 90.3, 64.2, and 49 % for CoWO4/NCW, NCW, NaOH/CW, and CW respectively. These findings underscore the composite's potential as an economical and efficient biosorbent for OP elimination, alongside its effectiveness in solar-assisted degradation processes.

Keywords

Main Subjects


  1. Ibrahim HA, Hassan AA, Ali AH, Kareem HM. Organic removal from refinery wastewater by using electro catalytic oxidation. AIP Publishing. 2023; http://dx. doi.org/10.1063/5.0163257.
  2. Alturki SF, Suwaed MS, Ghareeb A, AlJaberi FY, Hassan AA. Statistical analysis and optimization of mechanical-chemical electro-fenton for organic contaminant degradation in refinery wastewater. J Eng Res. 2024; http://dx. doi.1063/5.0163257.
  3. Naser GF, Dakhil IH, Hasan AA. Organic pollutants removal from oilfield produced water using nano magnetite as adsorbent. Glob NEST J. 2021; 23(3):381-7. http://dx. doi: 10.30955/gnj.003875.
  4. Atiyah AS, Al-Samawi AAA, Hassan AA. Photovoltaic cell electro-Fenton oxidation for treatment oily wastewater. AIP Conf Proc. 2020; 2235. http://dx. doi: 10.1063/5.0008937.
  5. Ahmed MJ, Mohammed AHAK, Kadhum AAH. Modeling of breakthrough curves for adsorption of propane, n-Butane, and iso-butane mixture on 5A molecular sieve zeolite. Transp Porous Media. 2011; 86(1):215-28. http://dx. doi: 10.1007/s11242-010-9617-5.
  6. Kurniawan TW, Sulistyarti H, Rumhayati B, Sabarudin A. Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) as adsorbents of heavy metal ions. J Chem. 2023. http://dx. doi: 10.1155/2023/5037027.
  7. Anastopoulos I, Ahmed MJ, Ojukwu VE, Danish M, Stylianou M, Ighalo JO. A comprehensive review on adsorption of Reactive Red 120 dye using various adsorbents. J Mol Liq. 2023; 123719. http://dx. doi.org/10.1016/j.molliq.2023.123719.
  8. Vargas AR, García LP, Guillen CS, AlJaberi FY, Salman AD, Alardhi SM, et al. Performance evaluation of a flighted rotary dryer for lateritic ore in concurrent configuration. Heliyon. 2023; 9(11): e21345. http://dx. doi: 10.1016/j.heliyon.2023.e21345.
  9. Négrier M, El Ahmar E, Sescousse R, Sauceau M, Budtova T. Upcycling of textile waste into high added value cellulose porous materials, aerogels and cryogels. RSC Sustain. 2023;1(2):335-45. http://dx. doi: 10.1039/d2su00084a.
  10. Ahmed MJ, Anastopoulos I, Kalderis D, Haris M, Usman M. Insight into the wheat residues-derived adsorbents for the remediation of organic and inorganic aquatic contaminants: A review. Environ Res. 2024; 118507. http://dx. doi.org/10.1016/j. envres.2024.118507.
  11. Kayan GÖ, Kayan A. Composite of Natural Polymers and Their Adsorbent Properties on the Dyes and Heavy Metal Ions. J Polym Environ. 2021; 29(11):3477-96. https://doi.org/10.1007/s10924-021-02154-x.
  12. Castañeda Juárez M, Martínez Miranda V, Almazán Sánchez PT, Linares Hernández I, Vázquez Mejía G. Electrosynthesis of sodium and potassium ferrate for the treatment of indigo blue aqueous solutions and denim wastewater. Rev Int Contam Ambient. 2020; 36(3):607-22. http://dx. doi: 10.20937/RICA.53381. 
  13. Kamel S. Recent development of cellulose/TiO2 composite in water treatment. Egypt J Chem. 2022; 65(13):601-12. http://dx. doi: 10.21608/ejchem. 2022. 128431.5689.
  14. Al-Jubouri SM, Sabbar HA, Lafta HA, Waisi BI. Effect of synthesis parameters on the formation 4a zeolite crystals: Characterization analysis and heavy metals uptake performance study for water treatment. Desalin Water Treat. 2019;165:290-300. http://dx. doi: 10.5004/dwt.2019.24566.
  15. Liu J, Chen F, Yao Q, Sun Y, Huang W, Wang R, et al. Application and prospect of graphene and its composites in wastewater treatment. Polish J Environ Stud. 2020; 29(6):3965-74. http://dx. doi: 10.15244/ pjoes/117660.
  16. Vosoughifar M. Simple route for preparation cobalt tungstate nanoparticles with different amino acids and its photocatalyst application. J Mater Sci Mater Electron. 2017; 28(11):8011-6. http://dx. doi: 10.1007/ s10854-017-6505-6.
  17. Alamery HRD, Hassan AA, Rashid AH. Copper removal in simulated wastewater by solar fenton oxidation. AIP Conf Proc. 2023; 2806(1). http://dx. doi: 10.1063/5.0167259.
  18. Jothivenkatachalam K, Prabhu S, Nithya A, Chandra Mohan S, Jeganathan K. Solar, visible and UV light photocatalytic activity of CoWO4 for the decolouri-zation of methyl orange. Desalin Water Treat.2 015;54(11):3134-45. http://dx.doi:10.1080/19443994. 2014.906324.
  19. Flihh SM, Ammar SH. Fabrication and photocatalytic degradation activity of core/shell ZIF-67@CoWO4 @CoS heterostructure photocatalysts under visible light. Environ Nanotechnology, Monit Manag. 2021; 16:100595. https://doi.org/10.1016/j.enmm. 2021. 100595.
  20. Theivasanthi T, Christma FLA, Joshua A, Gopinath SCB. Synthesis and characterization of cotton fiber-based nanocellulose. Int J Biol Macromol. 2018; 109:832-6. http://dx.doi.org/10.1016/j.ijbiomac. 2017. 11.054.
  21. Mondal MS, Paul A, Rhaman M. Recycling of silver nanoparticles from electronic waste via green synthesis and application of AgNPs-chitosan based nanocomposite on textile material. Sci Rep. 2023;13(1):1-15. https://doi.org/10.1038/s41598-023-40668-7.
  22. Shekofteh-Gohari M, Habibi-Yangjeh A. Fe3O4/ZnO/CoWO4 nanocomposites: Novel magnetically separable visible-light-driven photo-catalysts with enhanced activity in degradation of different dye pollutants. Ceram Int. 2017;43(3):3063-71. http://dx.doi.org/10.1016/j.ceramint.2016.11.115.
  23. Hassan AA, Shakir IK. Kinetic Insights into Solar-Assisted Fabrication and Photocatalytic Performance of CoWO4/NCW Heterostructure. Bull Chem React Eng Catal. 2024;10. http://dx. doi.org/10.9767 /bcrec. 20198.
  24. Raheem S, Al-yaqoobi A, Znad H, Abid HR. Caffeine extraction from spent coffee grounds by solid-liquid and ultrasound-assisted extraction: Kinetic and thermodynamic study. Iraqi J Chem Pet Eng. 2024; 25(1):49-57. http://dx. doi.org/10.31699/IJCPE. 2024.1.5.
  25. Simayee M, Iraji zad A, Esfandiar A. Green synthesize of copper nanoparticles on the cotton fabric as a self-regenerating and high-efficient plasmonic solar evaporator. Sci Rep. 2023;13(1):1-11. https://doi. org/10.1038/s41598-023-40060-5.
  26. Alfattal AH, Abbas AS. Synthesized 2nd generation zeolite as an acid-catalyst for esterification reaction. Iraqi J Chem Pet Eng. 2019; 20(3):67-73. http://dx. doi: 10.31699/ijcpe.2019.3.9.
  27. Mhawesh TH, Abd Ali ZT. Reuse of brick waste as a cheap-sorbent for the removal of nickel ions from aqueous solutions. Iraqi J Chem Pet Eng. 2020;21(2):15-23.http://dx. doi:10.31699/ijcpe. 2020. 2.3.
  28. Pandi N, Sonawane SH, Anand Kishore K. Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrason Sonochem. 2021; 70:105353. http://dx. doi: 10.1016/j. ultsonch.2020.105353.
  29. Nidheesh P V., Gandhimathi R. Textile wastewater treatment by electro-fenton process in batch and continuous modes. J Hazardous Toxic Radioact Waste. 2015; 19(3):04014038. http://dx. doi: 10.1061/ (asce)hz.2153-5515.0000254.
  30. Jorgetto AO, Silva RIV, Saeki MJ, Barbosa RC, Martines MAU, Jorge SMA, et al. Cassava root husks powder as green adsorbent for the removal of Cu(II) from natural river water. Appl Surf Sci.2014; 288:356-62. http://dx.doi.org/10.1016/j.apsusc.2013.10.032.
  31. Al-Hassan AA, Shakir I. Enhanced Photocatalytic Activity of CuO/NCW via Adsorption Optimization for refinery wastewater. Iran J Chem Chem Eng. 2024; (Articles in Press). http://dx. doi: 10.30492/ ijcce.2024.2034599.6684.
  32. Esteban García AB, Szymański K, Mozia S, Sánchez Pérez JA. Treatment of laundry wastewater by solar photo-Fenton process at pilot plant scale. Environ Sci Pollut Res. 2021; 28(7):8576-84. http://dx. doi: 10.1007/s11356-020-11151-x.
  33. Peralta-Hernández JM, Vijay S, Rodríguez-Narváez O, Pacheco-Álvarez MA. Photo and solar fenton processes for wastewater treatment. Electrochem Water Wastewater Treat. 2018; 223-237. http://dx. doi: 10.1016/B978-0-12-813160-2.00009-2.
  34. Amdeha E. Biochar-based nanocomposites for industrial wastewater treatment via adsorption and photocatalytic degradation and the parameters affecting these processes. Biomass Convers Biorefinery. 2023;0123456789. https://doi.org/10. 1007/ s13399- 023-04512-2.
  35. Ahsan H, Shahid M, Imran M, Mahmood F, Siddique MH, Ali HM, et al. Photocatalysis and adsorption kinetics of azo dyes by nanoparticles of nickel oxide and copper oxide and their nanocomposite in an aqueous medium. Peer J. 2022; 10:1-26. http://dx. doi: 10.7717/peerj.14358.
  36. Blachnio M, Zienkiewicz-Strzalka M, Derylo-Marczewska A, Nosach L V., Voronin EF. Chitosan–silica composites for adsorption application in the treatment of water and wastewater from anionic dyes. Int J Mol Sci. 2023;24(14). http://dx.doi:10. 3390/ ijms241411818.
  37. El Kaim Billah R, Ayouch I, Abdellaoui Y, Kassab Z, Khan MA, Agunaou M, et al. A novel chitosan/nano-hydroxyapatite composite for the adsorptive removal of Cd(II) from aqueous solution. Polymers (Basel). 2023; 15(6). http://dx. doi: 10.3390/polym15061524.
  38. Abu-dalo MA, Al-rosan SA, Albiss BA. Photocatalytic degradation of methylene blue using polymeric membranes based on cellulose acetate impregnated with ZnO nanostructures. Polymers (Basel). 2021;1-17. http://dx.doi.org/10.3390/polym 13193451.
  39. Al-jubouri SM, Sabbar HA, Khudhair EM, Ammar SH, Al S, Yas S, et al. Silver oxide-zeolite for removal of an emerging contaminant by simultaneous adsorption-photocatalytic degradation under simulated sunlight irradiation. J Photochem Photobiol A Chem. 2023;442:114763.https://doi.org/10.1016/j.jphotochem. 2023.114763.
  40. Somwanshi SB, Somvanshi SB, Kharat PB. Nanocatalyst: A brief review on synthesis to applications. J Phys Conf Ser. 2020; 1644(1). http://dx. doi: 10.1088/1742-6596/1644/1/012046.