Enhancing the Mechanical and Electrical Properties of Adhesive Coating Materials by Cu@Sn Core Shell Nanomaterials Mixed with Hybrid Polymeric Composite Material

Document Type : Original Article

Authors

Department of Mechanical Engineering, College of Engineering, Al-Nahrain University, P.O. Box: 64040, Jadria, Baghdad, Iraq.

Abstract

A new adhesive consisting of Cu@Sn core shell nanomaterials prepared through a series of chemical deposition reactions to preserve the copper nanoparticles from oxidation, where they were coated with tin. The ultimate goal of this process obtaining certain mechanical, physical and thermal properties. This mixture of Cu@Sn core shell nanomaterials was added at a weight ratio of 15 % to a polymeric composite material consisting of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) in equal proportions of the two polymer materials (PVP and PVA). The mechanical, optical and thermal properties tests of the new adhesive bonding layer, the result which was characterized by a shear stress approximately (τ) 8 Mpa and with electrical conductivity (σac) 15 Ω cm-1 for Cu@Sn core shell nanomaterials. After mixing with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA), the electrical conductivity was found to be 1.8×10-3 Ω cm-1. In light of these results, the new adhesive material promises wide applications in the electronic, automotive, aerospace and medical devices industries due to the attractive properties of the material in addition to its friendliness.

Keywords

Main Subjects


  1. Ataberk N. The effect of Cu nanoparticle adding on to epoxy-based adhesive and adhesion properties. Sci Rep. 2020; 10(1):1-11. https://doi.org/10.1038/s41598 - 020-68162-4. 
  2. Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nano-composites. Prog Mater Sci. 2017; 90:75-127. http:// dx.doi.org/10.1016/j.pmatsci.2017.07.004.
  3. Saba N, Jawaid M, Alothman OY, Paridah MT, Hassan A. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J Reinf Plast Compos. 2016; 35(6):447-70. https://doi.org/10.1177/07316844156184.
  4. Mosas KKA, Chandrasekar AR, Dasan A, Pakseresht A, Galusek D. Recent advancements in materials and coatings for biomedical implants. Gels. 2022; 8(5):1-35. https://doi.org/10.3390/gels8050323.
  5. Wang T, Wang M, Fu L, Duan Z, Chen Y, Hou X, et al. Enhanced thermal conductivity of polyimide composites with boron nitride nanosheets. Sci Rep. 2018; 8(1):2-9. https://doi.org/10.1038/s41598-018-19945-3.
  6. Saidina DS, Abdullah MZ, Hussin M. Metal oxide nanofluids in electronic cooling: a review. J Mater Sci Mater Electron. 2020; 31(6):4381-98. https://doi.org/ 10. 1007/s10854-020-03020-7.
  7. Xu X, Chen J, Zhou J, Li B. Thermal conductivity of polymers and their nanocomposites. Adv Mater. 2018; 30(17):1-10. https://doi.org/10.1002/adma.201705544
  8. Almubarak AA. The effects of heat on electronic components. Int J Eng Res Appl. 2017; 07(05):52-7. 
  9. Zhang Y, Park M, Park SJ. Implication of thermally conductive nanodiamond-interspersed graphite nano-platelet hybrids in thermoset composites with superior thermal management capability. Sci Rep. 2019; 9 (1):1-8.http://dx.doi.org/10.1038/s41598-019-39127-z.
  10. Vahabi H, Jouyandeh M, Cochez M, Khalili R, Vagner C, Ferriol M, et al. Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Prog Org Coat. 2018; 123:160-7. https://doi.org/10.1016/j.porgcoat.2018.07.014
  11. Khan J, Momin SA, Mariatti M. A review on advanced carbon-based thermal interface materials for electronic devices. Carbon N Y. 2020; 168:65-112. https://doi.org/10.1016/j.carbon.2020.06.012.
  12. Torrisi V, Ruffino F. Metal-polymer nanocomposites: (Co-) evaporation/(Co)sputtering approaches and electrical properties. Coatings. 2015; 5(3):378-424. https://doi.org/10.3390/coatings5030378.
  13. Alharbi KH, Alharbi W, El-Morsy MA, Farea MO, Menazea AA. Optical, thermal, and electrical characterization of polyvinyl pyrrolidone/ carboxy-methyl cellulose blend scattered by tungsten-trioxide nanoparticles. Polymers. 2023;15(5):123. https://doi. org/10.3390/polym15051223. 
  14. Kosmidou T V., Vatalis AS, Delides CG, Logakis E, Pissis P, Papanicolaou GC. Structural, mechanical and electrical characterization of epoxy-amine/carbon black nanonocomposites. Express Polym Lett. 2008; 2(5):364-72. https://doi.org/10.3144/expresspolymlett.2008.43
  15. More CV., Alsayed Z, Badawi MS, Thabet AA, Pawar PP. Polymeric composite materials for radiation shielding: a review. Environ Chem Lett. 2021; 19:2057-2090. https://doi.org/10.1007/s10311-021-01189-9.
  16. Shui YJ, Yao WH, Lin JH, Zhang Y, Yu Y, Wu CS, Zhang X, Tsou CH. Enhancing polyvinyl alcohol nano- composites with carboxy-functionalized graphene: an in-depth analysis of mechanical, barrier, electrical, antibacterial, and chemical properties. Polymers. 2024; 16(8):1070. https://doi.org/ 10.3390/ polym16081070.
  17. Atif R, Shyha I, Inam F. Mechanical, thermal, and electrical properties of graphene-epoxy nano-composites-A review. Polymers. 2016; 8(8):281. https://doi.org/10.3390/polym8080281 
  18. Rashid A Bin, Haque M, Islam SMM, Uddin Labib KMR. Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon. 2024;10(2):e24692. https://doi.org/10.1016/j.heliyon.2024.e24692
  19. Li L, Qin W, Mai B, Qi D, Yang W, Feng J, et al. Effect of carbon nanotubes on the mechanical, thermal, and electrical properties of tin-based lead-free solders: a review. Crystals. 2023; 13(5):1-19. https://doi.org/10.3390/cryst13050789.
  20. Hu T, Chen H, Li M, Zhao Z. Cu@Sn core-shell structure powder preform for high-temperature applications based on transient liquid phase bonding. IEEE Trans Power Electron. 2017; 32(1):441-51. https://doi.org/10.1109/TPEL.2016.2535365.
  21. Naghdi S, Rhee KY, Hui D, Park SJ. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings. 2018; 8(8): 278. https://doi. org/10.3390/coatings8080278.
  22. Bulinski M. Metal doped PVA films for opto-electronics-optical and electronic properties, an overview. Molecules. 2021; 26(10):2886. https://doi. org/ 10.3390/molecules26102886.
  23. Meng Q, Han S, Araby S, Zhao Y, Liu Z, Lu S. Mechanically robust, electrically and thermally conductive graphene-based epoxy adhesives. J Adhes Sci Technol. 2019;33(12):1337-56. https://doi.org/10. 1080/01694243.2019.1595890.
  24. Ahmed AT. Synthesis and characterization of nano particles based on polymers as die attach materials for low-temperature joining technique (LTJT). alnahrain; 2018. 
  25. Han S, Meng Q, Araby S, Liu T, Demiral M. Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis. Compos Part A Appl Sci Manuf. 2019; 120:116-26. https://doi.org/ 10.1016/j.compositesa.2019.02.027.
  26. Rahman MT, Asadul Hoque M, Rahman GT, Gafur MA, Khan RA, Hossain MK. Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys. 2019;13:102264. https://doi.org/10.1016/j.rinp.2019.102264.
  27. Bouaamlat H, Hadi N, Belghiti N, Sadki H, Naciri Bennani M, Abdi F, et al. Dielectric properties, AC conductivity, and electric modulus analysis of bulk ethylcarbazole-terphenyl. Adv Mater Sci Eng. 2020; 2020(1):8689150. https://doi.org/10.1155/ 2020/ 8689150