Optimizing the Surfactant/Polymeric Dispersant Combination in Pigment-Based Aqueous Inkjet Inks

Document Type : Original Article

Authors

1 Department of Printing Science and Technology, Institute for Color Science and Technology, P.O. Box: 32465-654, Tehran, Iran

2 Department of Printing Science and Technology, Institute for Color Science and Technology, P.O. Box: 32465-654, Tehran, IranDepartment of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, Iran

3 Department of Surface Coating and Corrosion, Institute for Color Science and Technology, P.O. Box: 32465-654, Tehran, Iran

Abstract

Pigment-based inkjet printing offers numerous advantages over traditional contact printing techniques; however, these inks require stringent dispersion properties and a delicate balance between rheological behavior and surface tension. This study addresses these challenges by exploring and optimizing the combination of surfactants and dispersing agents. We aimed to achieve a stable nanosized dispersion of Disperse Blue 359 in aqueous pigment-based inkjet inks while adjusting its rheological properties using a polymeric dispersant and surfactants. Various formulations with different surfactants and polymeric dispersant concentrations were assessed for rheological behavior, surface tension, particle size distribution, and dispersion stability. Among the assessed surfactants, the surfactant with the lowest hydrophilic-lipophilic balance offered the lowest and most stable particle size. It also showed the best performance during milling and almost Newtonian rheological behavior. It was attributed to its higher tendency to absorb on the particle surface. The optimization of polymeric dispersant concentration also revealed that samples with too low dispersant, experience flocculation rapidly after milling due to insufficient dispersant to cover the fresh surface of ground particles. On the other hand, samples with too high dispersant concentration have stability issues and also non-Newtonian rheological behavior because of too thick absorbed layer of dispersant on the particle surface and high concentration of non-absorbed polymer chains in the media. The optimized combination resulted in a stable nanosized pigment dispersion with low viscosity and Newtonian behavior. These findings provide valuable insights into formulating high-performance pigment-based inkjet inks, highlighting the critical interplay between dispersants and surfactants in achieving optimal performance. 

Keywords

Main Subjects


  1. Kosolia CT, Tsatsaroni EG, Nikolaidis NF. Disperse ink-jet inks: properties and application to polyester fibre. Color Technol. 2011; 127(6):357-64. https://doi.org/10. 1111/j.1478-4408.2011.00334.x.
  2. Kosolia CT, Varka EM, Tsatsaroni EG. Effect of surfactants as dispersing agents on the properties of microemulsified inkjet inks for polyester fibers. J Surfact Detergent. 2011; 14(1):3-7. https://doi.org/10. 1007/s11743-010-1194-7.
  3. Gao C, Wang H, Zhao H, Shi S, Guo H, Wang S, Fan L. Study on the quality and inkjet printing effect of the prepared washing-free disperse dye ink. RSC Adv. 2023; 13(18):12141-52. https://doi.org/10.1039/ D3RA01597A.
  4. Mousazadeh M, Khademi N, Kabdaşlı I, Rezaei S, Hajalifard Z, Moosakhani Z, Hashim K. Domestic greywater treatment using electrocoagulation-electro-oxidation process: optimisation and experimental approaches. Sci Rep. 2023; 13(1):15852. https://doi.org/ 10.1038/s41598-023-42831-6.
  5. Li L, Chu R, Yang Q, Li M, Xing T, Chen G. Performance of washing-free printing of disperse dye inks: influence of water-borne polymers. Polymers. 2022; 14(20):4277. https://doi.org/10.3390/polym 14204277.
  6. Research S. Digital Textile Printing Inks Market Size, Share, Trends, Forecast, & Growth Analysis-2024-2029. Michigan, United states: Stratview Research:2023. https://www.stratviewresearch.com/324/Digital-Textile -Printing-Inks-Market.html.
  7. Kamyshny A, Sowade E, Magdassi S. Inkjet ink formulations: overview and fundamentals. In: Zapka W. (eds.) Inkjet Printing in Industry. Weinhein, Germany: Wiley-VCH GmbH; 2022.
  8. Hutchings IM, Martin GD, Hoath SD. Introductory Remarks, In: Hoath SD. (eds.) Fundamentals of Inkjet Printing. Winheim, Germany: Wiley‐VCH Verlag GmbH & Co. KGaA; 2016.
  9. Hajalifard Z, Mousazadeh M, Khademi S, Khademi N, Jamadi MH, Sillanpää M. The efficacious of AOP-based processes in concert with electrocoagulation in abatement of CECs from water/wastewater. Clean Water. 2023; 6(1):30. https://doi.org/10.1038/s41545-023-00239-9.
  10. Kipphan H. Fundamentals, In: Kipphan H. Handbook of Print Media: Technologies and Production Methods. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001.
  11. Nie L, Xu X, Chen Y, Dong Y, Chang G, Li R. Development of binder-free pigment inks for direct inkjet printing on cotton fabric without pretreatment. Langmuir. 2023; 39(17):6266-75. https://doi.org/10. 1021/ acs.langmuir.3c00573.
  12. Nayini MMR, Ranjbar Z. Carbon nanotubes: dispersion challenge and how to overcome it, In: Abraham J, Thomas S, Kalarikkal N. (eds.) Handbook of carbon nanotubes. Cham: Springer Int Publishing; 2022.
  13. Yuan J, Xu J. Synthesis of amphiphilic block copolymer and its application in pigment-based ink. Materials. 2024; 17(2):330. https://doi.org/ 10.3390/ma 17020330.
  14. Asada M, Tanaka H, Suwa Y, Osawa S, Otsuka H. Improved pigment dispersibility in thick inks based on increased molecular dispersion of poorly water-soluble block copolymers. Dyes Pigm. 2024; 226112140. https://doi.org/10.1016/j.dyepig.2024.112140.
  15. Augé J, Leroy F. Lithium trifluoromethanesulfonate-catalysed aminolysis of oxiranes. Tetrahedron Lett. 1996; 37(43):7715-6. https://doi.org/10.1016/0040-4039 (96)01731-5.
  16. Yoon C, Choi JH. Synthesising polymeric dispersants to apply to carbon black pigmented mill bases for use in ink-jet inks. Color Technol. 2020; 136(1):60-74. https:// doi.org/10.1111/cote.12446.
  17. [17]         Biswas A, Sharma BK, Willett JL, Erhan SZ, Cheng HN. Soybean oil as a renewable feedstock for nitrogen-containing derivatives. Energy Environ Sci. 2008; 1(6):639-44. https://doi.org/10. 1039/ B809215J.
  18. Mohammad Raei Nayini M, Jalili M, Ranjbar Z. Printed electronics based on carbon nanotubes and graphene nanosheets. J Studies Color World. 2020; 10 (3): 29-42.https://dorl.net/dor/20.1001.1.22517278.1399. 10.3.3.8.
  19. Mohammad raei Nayini M, Jalili M, Bastani S, Khamseh S. Printed solar cells an inevitable remedy for the global energy crisis. J Studies Color World. 2023; 13(4):377-406. https://dorl.net/dor/20.1001.1.22517278. 1402.13.4.3.1.
  20. Auschra C, Eckstein E, Mühlebach A, Zink MO, Rime F. Design of new pigment dispersants by controlled radical polymerization. Prog Org Coat. 2002; 45(2):83-93. https://doi.org/10.1016/S0300-9440(02) 00048-6.
  21. Van den Haak HJW. Design of pigment dispersants: methodology for selection of anchoring groups. J Coat Technol. 1997; 69(873):137-42. https://doi.org/10.1007/ BF02697764.
  22. Najafi F, Shirkavand Hadavand B, Manouchehri F. Synthesis and characterization of anionic polyurethane dispersants for waterborne paints. Prog Color Colorant Coat. 2013; 7(3):147-54. https://doi.org/10.30509/ pccc. 2013. 75835.
  23. Meghdadi Esfahani F, Balali E, Hashemi SS, Khadivi R, Mohammad Raei Nayini M, Voung B. Investigating an iron-doped fullerene cage for adsorption of niacin (vitamin B3): DFT analyses of bimolecular complex formations. Comput Theor Chem. 2022; 1214113768. https://doi.org/10.1016/j.comptc.2022.113768.
  24. Hayeri T, Mannari V. Sustainable organic–inorganic hybrid coating system with multiple cure capabilities. J Coat Technol Res. 2024; https://doi.org/10.1007/ s11998-024-00969-6.
  25. Mohammad Raei Nayini M, Bastani S, Moradian S, Croutxé-Barghorn C, Allonas X. Manipulating the surface structure of hybrid UV curable coatings through photopolymerization-onduced phase separation: influence of inorganic portion and photoinitiator content. Macromol Chem Phys. 2018; 219(4):1700377. https:// doi.org/10.1002/macp.201700377.
  26. Raoufi F, Montazeri S, Rastegar S, Asadi S, Ranjbar Z. Dispersion of silica aerogel particles in thermal insulating waterborne coating. Prog Color Colorant Coat. 2023; 16(3):309-17. https://doi.org/10.30509/ pccc.2023.167112.1206.
  27. Motamedi M, Ashhari S, Nayini MMR, Ranjbar Z, Optical electrical and mechanical properties of functionalized polymer nanocomposites. In: Patel G, Deshmukh K, Hussain CM. (eds.) Advances in Functionalized Polymer Nanocomposites. Cambridge- United States: Woodhead Publishing; 2024.
  28. Abreu B, Pires AS. Guimarães A, Fernandes RMF, Oliveira IS, Marques EF. Polymer/surfactant mixtures as dispersants and non-covalent functionalization agents of multiwalled carbon nanotubes: Synergism, morphological characterization and molecular picture. J Mol Liq. 2022; 347118338. https://doi.org/10.1016/j. molliq.2021.118338.
  29. Chang CJ, Chang SJ, Tsou S, Chen SI, Wu FM, Hsu MW. Effects of polymeric dispersants and surfactants on the dispersing stability and high-speed-jetting properties of aqueous-pigment-based ink-jet inks. J Polym Sci Part B: Polym Phys. 2003; 41(16):1909-20. https://doi. org/ 10.1002/polb.10562.
  30. Mohsen MRN, Mojtaba J, Zahra R. Printed electronics, based on carbon nanotubes and graphene nanosheets. J Studies Color World. 2020; 10(3):29-42. https://dor.net/20.1001.1.22517278.1399.10.3.3.8.
  31. Fromm JE. Numerical calculation of the fluid dynamics of drop-on-demand jets,. IBM J Res Dev. 1984; 28(3):322-33. 10.1147/rd.283.0322.
  32. Derby B, Reis N. Inkjet printing of highly loaded particulate suspensions. MRS Bull. 2003; 28(11):815-8. https://doi.org/10.1557/mrs2003.230.
  33. Reis N, Ainsley C, Derby B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors, J Appl Phys. 2005; 97(9):094903. https://doi.org/10. 1063/1.1888026.
  34. Gaida R, Dziubek K, Król K, Ostaszewska M, Wit M. Influence of different dispersants on the quality and stability of aqueous quinacridone magenta pigment dispersion for ink-jet applications. Color Technol. 2023; 139(6):637-53. https://doi.org/10.1111/cote.12678.
  35. Alihoseini MR, Khani MR, Jalili M, Shokri B. Direct sublimation inkjet printing as a new environmentally friendly approach for printing on polyester textiles. Prog Color Colorant Coat. 2021; 14(2):129-38. https://doi. org/10. 30509/pccc.2021.81699.
  36. Gharanjig H, Gharanjig K, Sarli MA, Ozguney AT, Jalili M, Gharanjik A, Jahankaran S. Effect of molecular composition of comb-like polycarboxylate dispersants on hydrophobic dye dispersion properties, J Mol Liq. 2022;350118615. https://doi.org/10.1016/j.molliq. 2022. 118615.
  37. Mohammad Raei Nayini M, Bastani S, Ranjbar Z. Synthesis and characterization of functionalized carbon nanotubes with different wetting behaviors and their influence on the wetting properties of carbon nanotubes/polymethylmethacrylate coatings. Prog Org Coat. 2014; 77(6):1007-14. https://doi.org/10.1016/ j. porgcoat.2014.02.013.
  38. Abdelaziz MA, Ibrahim MA, Abdel-Messih MF, Mekewi MA. Vivid application of polyurethane as dispersants for solvent based inkjet ink. Prog Org Coat. 2020;148105875.https://doi.org/10.1016/j.porgcoat.2020. 105875.
  39. Chung YS. Turbidimetric evaluation of the dispersion properties of disperse dyes. Text Res J. 2000; 70(6):550-4. 10.1177/004051750007000613.
  40. Rust S, Pauer W. Determination of inline-particle sizes by turbidity measurement in high solid content emulsion polymerisations. J Polym Res. 2022; 29(7):307. https://doi.org/10.1007/s10965-022-03141-z.
  41. Seneewong-Na-Ayutthaya M, Pongprayoon T, O'Rear EA. Colloidal stability in water of modified carbon nanotube: comparison of different modification techniques. Macromol Chem Phys. 2016; 217(23):2635-46. https://doi.org/10.1002/macp.201600334.
  42. Shen X, Sun X, Liu J, Hang J, Jin L, Shi L. A facile strategy to achieve monodispersity and stability of pigment TiO2 particles in low viscosity systems. J Colloid Interface Sci. 2021; 581586-94. https://doi.org/ 10.1016/j.jcis.2020.07.132.
  43. Dybowska-Sarapuk L, Kielbasinski K, Arazna A, Futera K, Skalski A, Janczak D, Sloma M, Jakubowska M. Efficient inkjet printing of graphene-based elements: influence of dispersing agent on ink viscosity. Nanomaterials. 2018; 8(8):602. https://doi.org/10. 3390/ nano8080602.
  44. Gebauer JS, Mackert V, Ognjanović S, Winterer M. Tailoring metal oxide nanoparticle dispersions for inkjet printing. J Colloid Interface Sci. 2018; 526400-9. https://doi.org/10.1016/j.jcis.2018.05.006.
  45. Nallan HC, Sadie JA, Kitsomboonloha R, Volkman SK, Subramanian V. Systematic design of jettable nanoparticle-based inkjet inks: rheology acoustics and jettability. Langmuir. 2014; 30(44):13470-7. https://dpi. org/ 10.1021/la502903y.
  46. Tuladhar T. Measurement of complex rheology and jettability of inkjet inks. In: Handbook of Industrial Inkjet Printing. 2017.
  47. Mohammad Raei Nayini M, Ataeefard M. Characterization of electrophotographic printing toner: thermomechanical point of view. Prog Color Colorant Coat. 2024;17(2):175-83. https://doi.org/10.30509/ pccc. 2023.167163.1232.
  48. Ziegelbaur RS, Caruthers JM. Rheological properties of poly(dimethylsiloxane) filled with fumed silica: I. Hysteresis behaviour. J Non-Newtonian Fluid Mech. 1985; 17(1):45-68. https://doi.org/10.1016/0377-0257 (85) 80005-7.
  49. Wheeler JSR, Yeates SG, Polymers in inkjet printing. In: Hoath SD. Fundamentals of Inkjet Printing. Weinheim, Germany: Wiley-VCH; 2016.
  50. Hang J, Shi L, Feng X, Xiao L. Electrostatic and electrosteric stabilization of aqueous suspensions of barite nanoparticles. Powder Technol. 2009; 192(2):166-70. https://doi.org/10.1016/j.powtec.2008.12.010.
  51. Jenkins P, Snowden M. Depletion flocculation in colloidal dispersions. Adv Colloid Interface Sci. 1996; 6857-96. https://doi.org/10.1016/S0001-8686(96)90046-9.
  52. Tuinier R, Introduction to depletion interaction and colloidal phase behaviour. In: Lang P, Liu Y. (eds.) Soft Matter at Aqueous Interfaces. Cham, Switzerland: Springer International Publishing; 2016.
  53. Pu Z, Fan X, Su J, Zhu M, Jiang Z. Aqueous dispersing mechanism study of nonionic polymeric dispersant for organic pigments. Colloid Polym. Sci. 2022; 300(3):167-76. https://doi.org/10.1007/s00396-021-04937-z.