ZnO and SiO2 Nano Particles as Intermediate Coatings for Superhydrophobic and Whiter Self-Clean Polished Porcelain Tiles

Document Type : Original Article

Authors

1 Nano Pigments and Coatings Laboratory, Department of Physics, Yazd University, P.O. Box: 89195-741, Yazd, Iran

2 Department of Physics, College of Education, University of Garmian, Kalar-Kurdistan Region, P.O. Box: 70-236, Iraq

Abstract

Traditional porcelain tiles often lack self-cleaning properties and suffer from aesthetic limitations. This study presents a novel approach for fabricating superhydrophobic, self-cleaning porcelain tiles with enhanced visual appeal. We strategically combined SiO2 and ZnO nanolayers with an antifouling material, applied via spray and drop coating methods. Characterizations (FE-SEM, FTIR, contact angle, UV-Vis, colorimetry, roughness, illuminance, and stain resistance) confirmed the effectiveness of our approach. Heat treatment of the antifouling coating (400 °C) significantly increased hydrophobicity (WCA=119°). SiO2 and ZnO intermediate layers enhanced water repellency, achieving 154° and 149° water contact angles, respectively. This demonstrates superhydrophobicity, in line with Cassie-Baxter's model, and mimics the lotus leaf's self-cleaning mechanism. Low surface energy, likely due to antifouling nanoparticle bonds, contributes to water repellency with roll-off angles of 6° and 7° and causes anti-stain properties on the tile surface. Importantly, these layers optimize surface roughness, boosting hydrophobicity and improving the whiteness and brightness of polished tiles. Surface roughness values of 308 nm (SiO2) and 158 nm (ZnO), along with superior whiteness values (116.4 and 106, respectively), were observed, exceeding surfaces without intermediate layers (57.5). Rayleigh scattering theory explains the whiteness enhancement. Stain resistance significantly improved with intermediate layers, while surface gloss remained unchanged. This research demonstrates the potential of our coating approach to create highly functional and visually appealing polished tiles for diverse industrial applications.

Keywords

Main Subjects


  1. Zhu Q, Zhang C, Zhu N, Gong J, Zhou Z, Sheng D, et al. Preparation of polyester yarns with bright color and enhanced hydrophobicity using lotus leaf powders. Ind Crops Prod. 2023; 193:116152. https://doi.org/10. 1016/j.indcrop.2022.116152.
  2. Sotoudeh F, Mousavi SM, Karimi N, Lee BJ, Abolfazli-Esfahani J, Manshadi MKD. Natural and synthetic superhydrophobic surfaces: A review of the fundamentals, structures, and applications. Alexandria Eng J. 2023; 68:587-609. https://doi.org/10.1016/j. aej.2023.01.058.
  3. Ge-Zhang S, Cai T, Yang H, Ding Y, Song M. Biology and nature: Bionic superhydrophobic surface and principle. Front Bioeng Biotechnol. 2022; 10:1-19. https://doi.org/10.3389/fbioe.2022.1033514.
  4. Xu P, Sui X, Wang S, Liu G, Ge A, Coyle TW, et al. Superhydrophobic ceramic coatings with lotus 
    leaf-like hierarchical surface structures deposited 
    via suspension plasma spray process. Surf Interface. 2023; 38:102780. https://doi.org/10.1016/j.surfin. 2023.102780.
  5.                 Sui X, Wang Y, Sun Y, Liang W, Xue Y, Bonsu AO. Superhydrophobic behavior of cylinder dual-scale hierarchical nanostructured surfaces. Colloids Surfaces A Physicochem Eng Asp. 2021; 629:127406. https://doi.org/10.1016/j.colsurfa.2021.127406.
  6. Chindaprasirt P, Jitsangiam P, Pachana PK, Rattanasak U. Self-cleaning superhydrophobic fly ash geopolymer. Sci Rep. 2023; 13:1-9. https://doi.org/10. 1038/ s41598-022-27061-6.
  7. Ashok Kumar SS, Bashir S, Ramesh K, Ramesh S. A comprehensive review: Super hydrophobic graphene nanocomposite coatings for underwater and wet applications to enhance corrosion resistance. Flat Chem. 2022; 31:100326. https://doi.org/10.1016/j. flatc.2021.100326.
  8.                 Akbari R, Mohammadizadeh MR, Khajeh Aminian M, Abbasnejad M. Hydrophobic Cu2O surfaces prepared by chemical bath deposition method. Appl Phys A Mater Sci Proc. 2019; 125:1-7. https://doi.org/ 10.1007/s00339-019-2470-7.
  9. Zhao Y, Lei L, Wang Q, Li X. Study of super-hydrophobic concrete with integral superhydro-phobicity and anti-corrosion property. Case Stud Constr Mater. 2023; 18:e01899. https://doi.org/10. 1016/j.cscm.2023.e01899.
  10. Striani R, Cappai M, Casnedi L, Esposito Corcione C, Pia G. Coating’s influence on wind erosion of porous stones used in the Cultural Heritage of Southern Italy: Surface characterisation and resistance. Case Stud Constr Mater. 2022; 17:e01501. https://doi.org/ 10.1016/j.cscm.2022.e01501.
  11. Li C, Zhang G, Lin L, Wu T, Brunner S, Galmarini S, et al. Silica aerogels: from materials research to industrial applications. Int Mater Rev. 2023; 68:862-900. https://doi.org/10.1080/09506608.2023.2167547.
  12. Akarsu M, Burunkaya E, Tunali A, Tamsü Selli N, Arpaç E. Enhancement of hybrid sol-gel coating and industrial application on polished porcelain stoneware tiles and investigation of the performance. Ceram Int. 2014; 40:6533-40. https://doi.org/10.1016/j.ceramint. 2013.11.106.
  13. Alves HJ, Minussi FB, Melchiades FG, Boschi AO. Porosidade Susceptível ao Manchamento em Porcelanato Polido. Cerâmica Ind. 2009; 14:21-6.
  14. Ambrosi M, Santoni S, Giorgi R, Fratini E, Toccafondi N, Baglioni P. High-performance and anti-stain coating for porcelain stoneware tiles based on nanostructured zirconium compounds. J Colloid Interface Sci. 2014; 432:117-27. https://doi.org/10. 1016/j.jcis.2014.07.002.
  15. Dondi M, Raimondo M, Zanelli C. Stain resistance of ceramic tiles. Technology 2008:2016-9.
  16. Cavalcante PMT, Dondi M, Ercolani G, Guarini G, Melandri C, Raimondo M, et al. The influence of microstructure on the performance of white porcelain stoneware. Ceram Int. 2004; 30:953-63. https://doi. org/ 10. 1016/j.ceramint.2003.11.002.
  17. Abou Elmaaty TM, Sayed-Ahmed K, El Gohari MM, Noaman R. Enhancing the properties of bone China ceramics by treatment with microporous SiO2 nanoparticles. Chem Pap. 2022; 76:5879-91. https://doi.org/10.1007/s11696-022-02296-9.
  18. Suvaci E, Tamsu N. The role of viscosity on microstructure development and stain resistance in porcelain stoneware tiles. J Eur Ceram Soc.2010; 30:3071-7.https://doi.org/10.1016/j.jeurceramsoc. 2010. 06.010.
  19. Song JW, Fan LW. Understanding the effects of surface roughness on the temperature and pressure relevancy of water contact angles. Colloid Surf A Physicochem Eng Asp. 2023; 656:130391. https://doi. org/ 10.1016/j.colsurfa.2022.130391.
  20. Zhang J, Xu B, Zhang P, Cai M, Li B. Effects of surface roughness on wettability and surface energy of coal. Front Earth Sci. 2023; 10:1-10. https://doi.org/ 10.3389/feart.2022.1054896.
  21. Aminian MK, Sajadi F, Mohammadizadeh MR, Fatah S. Hydrophilic and photocatalytic properties of TiO2/SiO2 nano-layers in dry weather. Prog Color Color Coat. 2021; 14:221–32. https://doi.org/ 10. 30509/pccc.2021.81721
  22. Li K, Yao W, Liu Y, Wang Q, Jiang G, Wu Y, et al. Wetting and anti-fouling properties of groove-like microstructured surfaces for architectural ceramics. Ceram Int. 2022; 48:6497–505. https://doi.org/10. 1016/ j.ceramint.2021.11.194.
  23. Golshan V, Mirjalili F, Fakharpour M. Self-
    cleaning surfaces with superhydrophobicity of Ag-
    TiO2 nanofilms on the floor ceramic tiles. Glas Phys Chem. 2022; 48:35-42. https://doi.org/10.1134/ S1087659622010059.
  24. Moghaddasi Z, Mohammadizadeh MR. Synthesis and effectiveness of Cu-infused TiO2-SiO2 based self-cleaning and antibacterial thin-films coating on ceramic tiles. J Sol-Gel Sci Technol. 2022; 103:396-404. https://doi.org/10.1007/s10971-022-05853-6.
  25.                 Mili M, Hada V, Mallick T, Singhwane A, Tilwari A, Hashmi SAR, et al. Advances in nanoarchitectonics of antimicrobial tiles and a quest for anti-SARS-CoV-2 tiles. J Inorg Organomet Polym Mater. 2022; 32:3355-67. https://doi.org/10.1007/s10904-022-02325-w.
  26. Fatah SK, Khajeh Aminian M, Bahamirian M. Multifunctional superhydrophobic and cool coating surfaces of the blue ceramic nanopigments based on the heulandite zeolite. Ceram Int. 2022; 48:21954-66. https://doi.org/10.1016/j.ceramint.2022.04.178.
  27. Ferreira-Neto EP, Ullah S, Martinez VP, Yabarrena JMSC, Simões MB, Perissinotto AP, et al. Thermally stable SiO2@TiO2 core@shell nanoparticles for application in photocatalytic self-cleaning ceramic tiles. Mater Adv. 2021; 2:2085-96. https://doi.org/10. 1039/d0ma00785d.
  28. Reinosa JJ, Romero JJ, Jaquotot P, Bengochea MA, Fernández JF. Copper based hydrophobic ceramic nanocoating. J Eur Ceram Soc. 2012; 32:277-82. https://doi.org/10.1016/j.jeurceramsoc.2011.08.013.
  29. Motlagh NV, Derogar S, Bagherzade G, Gholami R. Preparation and characterization of anti-stain self-cleaning coating on ceramic. Mater Chem Phys. 2022; 276:125278. https://doi.org/10.1016/j.matchemphys. 2021.125278.
  30. Jisr RM. Controlling Surface Energy in Polyelectrolyte Multilayers. Florida State University, 2007.
  31. Farrokhbin M, Aminian MK, Motahari H. Wettability of liquid mixtures on porous silica and black soot layers. Prog Color Color Coat. 2020; 13:239-49. https://doi.org/10.30509/pccc.2020.81645
  32. Sánchez E, García-Ten J, Sanz V, Moreno A. Porcelain tile: Almost 30 years of steady scientific-technological evolution. Ceram Int. 2010; 36:831-45. https://doi.org/10.1016/j.ceramint.2009.11.016.
  33. Hutchings IM, Xu Y, Sánchez E, Ibáñez MJ, Quereda MF. Development of surface finish during the polishing of porcelain ceramic tiles. J Mater Sci. 2005; 40:37-42. https://doi.org/10.1007/s10853-005-5684-3.
  34. Xiong H, Shui A, Shan Q, Zeng S, Xi X, Du B. Foaming mechanism of polishing porcelain stoneware tile residues via adding C, Al and Si powder. J Eur Ceram Soc. 2022; 42:1712-21. https://doi.org/10. 1016/ j.jeurceramsoc.2021.11.065.
  35. Motlagh NV, Derogar S, Bagherzade G, Gholami R. Preparation and characterization of anti-stain self-cleaning coating on ceramic. Mater Chem Phys. 2022; 276:1-11.https://doi.org/10.1016/j.matchemphys.2021. 125278.
  36. Zheng J, Qu G, Yang B, Wang H, Zhou L, Zhou Z. Facile preparation of robust superhydrophobic ceramic surfaces with mechanical stability, durability, and self-cleaning function. Appl Surf Sci. 2022; 576:151875. https://doi.org/10.1016/j.apsusc.2021.151875.
  37. Acikbas G, Calis Acikbas N, Ubay E, Karaer H. The influence of varying Cu doping concentrations on the microstructure, phase evolution and surface wettability of ceramic glazes modified with nano Cu-ZnO. Appl Phys A Mater Sci Proc. 2024; 130:1-13. https://doi.org/10.1007/s00339-024-07546-z.
  38. Mazumder A, Alangi N, Sethi S, Prabhu KN, Mukherjee J. Study on wettability of plasma spray coated oxide ceramic for hydrophobicity. Surf Interface. 2020; 20:100591. https://doi.org/10.1016/ j.surfin.2020.100591.
  39. Valipour M. N, Birjandi FC, Sargolzaei J. Super-non-wettable surfaces: A review. Colloids Surfaces A Physicochem Eng Asp. 2014; 448:93-106. https://doi.org/10.1016/j.colsurfa.2014.02.016.
  40. Sanabria-Mafaile J, San Martin-Martinez E, Cruz-Orea A. Thermal properties of superhydrophobic films applied in ceramic tiles. Colloid Surf A Physicochem Eng Asp. 2020; 607:125524. https://doi.org/10.1016/j. colsurfa.2020.125524.
  41. Guenther BD, Steel DG. Encyclopedia of modern optics. vol. 1-5. 2018. https://doi.org/10.5860/ choice. 43-0036.