Surface Modification of Cotton Gauze by Silk Fibroin Nanofibers as Compatible Biomaterial

Document Type : Original Article

Author

Department of Textile Engineering, Yazd University, P.O. Box: 8915818411, Yazd,‏ Iran‏.‏

Abstract

The present research explores preparing and characterizing silk fibroin electrospun nanofibers on cotton gauze bandages to form a novel silk-gauze nanocomposite. The presence of the extracted silk fibroin on the cotton substrate surface was demonstrated by scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectrophotometry (ATR-FTIR), wide-angle X-ray diffraction (WAXD) and K/S values.  The SEM images of cotton samples revealed the deposition of silk fibroin from silk fiber on the substrate surface. The dyed silk-gauze nanocomposite wound dressing presented significantly higher color strength than an uncoated gauze bandage. The physical properties of nanocomposite samples, i.e., porosity, tensile strength, bending characterizations, air permeability, and water uptake, were measured. The changes in the secondary structure of silk fibroin, morphology, crystallinity, hydrophilicity as well as cytotoxicity of nanocomposites were analyzed before and after undergoing treatments with ethanol and methanol. The results demonstrated a decrease in water uptake and porosity values and a slight increment in tensile strength and bending characterization of the treated nanocomposite samples compared to the untreated samples. MTT assay as an indirect cytotoxicity method showed cytocompatibility of the silk-gauze nanocomposite wound dressing. The indirect cytotoxicity results showed that samples treated with ethanol demonstrated no cytotoxicity on the L929 cancer cell line.

Keywords

Main Subjects


  1. Hardy JG, Romer LM, Scheibel TR. Polymeric materials based on silk proteins. Polymer. 2008; 49(20): 4309–4327.https://doi.org/10.1016/j.polymer. 2008.08.006.
  2. Vepari Ch, Kaplan DL, Silk as a biomaterial. Prog Polym Sci. 2007; 32(8-9): 991-1007. https://doi.org/ 10.1016/j.progpolymsci.2007.05.013.
  3. Padaki NV, Das B, Basu A. Advances in understanding the properties of silk. In:  Baltes H, Fedder GK, Korvink JG. (eds). Advances in Silk Science and Technology.  Elsevier Ltd., Vol. 2 Wiley-VCH, Weinheim, Germany; 2004.p.3-16.
  4. Reizaba A, Costa C M, Pérez-Álvarez L, Vilas-Vilela JL, Lanceros-Méndez S.Silk Fibroin as Sustainable Advanced Material: Material Properties and Characteristics, Processing, and Applications. Adv Funct Mater. 2023; 33(3): 2210764.https://doi. org/ 10.1002/adfm.202210764.
  5. Terada D, Yokoyama Y, Hattori S, Kobayashi H, Tamada Y. The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterial preparation. Mater Sci Eng C. Mater Biol Appl.2016; 58:119-126. https://doi.org/10.1016/ j.msec.2015.07.041.
  6. Tao H, Amsden JJ, Strikwerda AC, Fan K, Kaplan DL, Zhang X, et al. Metamaterial silk composites at terahertz frequencies. Adv Mater. 2010; 22(32): 3527-3531. https://doi.org/10.1002/adma.201000412.
  7. Koha LD, Cheng Y, Teng CP, Khina YW, Loh XJ, Tee SY, et al.  Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci, 2015; 46:86-110. http:// dx.doi.org/10.1016/ j. progpolymsci. 2015.02.001.
  8. Cao Y, Wang B. Biodegradation of Silk Biomaterials. Int J Mol Sci. 2009; 10(4): 1514-1524. http://dx. doi:10.3390/ijms10041514.
  9. Zhang Q, Yan S, Li M. Silk fibroin based porous. Mater. 2009; 2(4): 2276-2295. http://dx.doi: 10. 3390/ma2042276.
  10. Nogueira GM, Rodas AC, Leite CA, Giles C, Higa OZ, Polakiewicz B, et al., Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material. Bioresour Technol. 2010; 101(21): 8446-8451. http://dx.doi:10.1016/j.biortech. 2010. 06.064.
  11. Barud H, Barud HD, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, et al.,Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym. 2015; 128:41-51. http://dx.doi.org/ 10.1016/j.carbpol. 2015.04.007.
  12. Çalamak S, Erdoğdu C, Özalp M, Ulubayram K. Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Mater Sci Eng C. 2014; 43:11-20. http://dx. doi.org/10.1016/j.msec.2014.07.001
  13. Liu J, Xie X, Wang T, Chen H, Fu Y, Cheng X, et al. Promotion of wound healing using nanoporous silk fibroin sponges. ACS Appl Mater Interfaces. 2023; 15(10): 12696-12707. https://doi.org/10.1021/ acsami. 2c20274.
  14. Um IC, KweonH, Park YH, Hudson S. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol. 2001; 29(2): 91-97. https://doi.org/10. 1016/ S0141-8130(01)00159-3.
  15. Li L, Zhou L, Zhu J, Jian M, Zhang J. Superstrong and tough silk fibers cross-linked with functionalized graphene. Carbon. 2024; 226:119227. https://doi.org/ 10.1016/j.carbon.2024.119227.
  16. Xing X, Han Y, Cheng H. Biomedical applications of chitosan/silk fibroin composites: A review. Int J Biol Macromol. 2023; 240: 124407. https://doi.org/10. 1016/j. ijbiomac.2023.124407.
  17. Acharya C, Hinz B, Kundu SC. The effect of lactose-conjugated silk biomaterials on the development of fibrogenic fibroblasts. Biomaterials 2008; 29(35): 4665-4675. https://doi.org/10.1016/j.biomaterials. 2008. 08.033.
  18. Acharya C, Ghosh SK, Kundu SC. Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. J Mater Sci Mater Med. 2008; 19: 2827-2836. https://doi.org/10.1007/s10856-008-3408-3.
  19. Kundu J, Dewan M, Ghoshal S, Kundu SC., Mulberry non-engineered silk gland protein vis-a-vis silk cocoon protein engineered by silkworms as biomaterial matrices. J Mater Sci Mater Med. 2008; 19: 2679-289. http://dx. doi.org/10.1007/s10856-008-3398-1.
  20. Tran HA, Hoang TT, Maraldo A, Do TN, Kaplan DL, Lim KS, Rnjak-Kovacina J., Emerging silk fibroin materials and their applications: New functionality arising from innovations in silk crosslinking. Mater Today. 2023; 65: 244-259. https://doi.org/10.1016/ j.mattod.2023.03.027.
  21. Zhang Y, Sheng R, Chen J, Wang H, Zhu Y, Cao Z, et al. Silk fibroin and sericin differentially potentiate the paracrine and regenerative functions of stem cells through multiomics analysis. Adv Mater. 2023; 35(20): 2210517. https://doi.org/10.1002/adma. 202210517
  22. Yu B, Li Y, Lin Y, Zhu Y, Hao T, Wu Y, et al.  Research progress of natural silk fibroin and the application for drug delivery in chemotherapies. Frontiers Pharmacol. 2023; 13:1071868. https://doi. org/ 10.3389/fphar.2022.1071868.
  23. Dalpra I, Freddi G, Minic J, Chiarini A, Armato U. De Novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials. 2005; 26(14): 1987-1999. https://doi.org/10.1016/j. biomaterials.2004.06.036.
  24. Yang S, Zhao C, Yang Y, Ren J, Ling S. The fractal network structure of silk fibroin molecules and its effect on spinning of silkworm silk. ACS Nano. 2023; 17(8): 7662-7673. https://doi.org/10.1021/acsnano. 3c00105.
  25. Mauney JR, Nguyen T, GillenK, Kirker-Head C, Gimble JM, Kaplan DL, Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials. 2007; 28(35): 5280-5290. https://doi.org/10.1016/j. biomaterials. 2007.08.017.
  26. Uebersax L, Hagenmuller H, Hofmann S, Gruenblatt E, Müller R, Vunjaknovakovic G, et al. Effect of scaffold design on bone morphology in vitro. Tissue Eng. 2006; 12(12): 3417-3429. https://doi.org/10. 1089/ ten.2006.12.3417.
  27. Fang Q, Chen D, Yang Z, Li M, In vitro and in vivo research on using Antheraeapernyi silk fibroin as tissue engineering tendon scaffolds. Mater Sci Eng C. 2009; 29(5): 1527-1534. https://doi.org/10.1016/j. msec.2008.12.007.
  28. Arango1 MC, Osorio YM, Osorno JB, Parra SB, Alvarez López C, Effect of ethanol post treatments over sericin scaffolds for tissue engineering aApplications. J Polym Environ 2022; 31(5):1800-1811. https://doi.org/10.1007/s10924-022-02647-3.
  29. Venugopal J, Ramakrishna S, Application of polymer nanofibers in biomedicine and biotechnology. Appl BiochemBiotechnol. 2005; 125: 147-157. https://doi. org/10.1385/abab: 125:3:147.
  30. Duan YY, Jia J, Wang SH, Yan W, Jin L, Wang ZY. Preparation of antimicrobial poly (ε‐caprolactone) electrospun nanofibers containing silver‐loaded zirconium phosphate nanoparticles. J Appl Polym Sci. 2007; 106(2): 1208-1214. https://doi.org/ 10.1002/ app.26786. 
  31. Madhugiri S, Sun B, Smirniotis PG,   Ferraris JP, Balkus JrKJ. Electrospun mesoporous titanium dioxide fibers. MicroporMesopor Mater. 2004; 69(1-2): 77-83. https://doi.org/10.1016/ j.micromeso. 2003. 12.023.
  32. Amiraliyana N, Nouri M, Haghighat Kish M. Structural characterization and mechanical properties of electrospun silk fibroin nanofiber. Mat Polym Sci Ser A. 2010; 52(4): 407-412. https://doi.org/10.1134/ S0965545X10040097.
  33. Martindale D, Biodegradable scaffolds give skin cells a better road map for self-repair Sci Biodegradable,. 2000; 283: 34-36. https://www.jstor.org/stable/ 26058782.
  34. Pandey V, Sharma A, Sharma A, Kumari V. The role of silk as natural biomaterial in food safety. Food Biosci. 2024; 60:104538. https://doi.org/10.1016/j. fbio.2024.104538.
  35. Nawalakhe R, Shi Q, Vitchuli N, Bourhamb M A, Zhang X , McCord M G. Novel atmospheric plasma enhanced silk fibroin nanofiber/gauze composite wound dressings. J Fiber Bioeng Inform. 2012; 5(3): 227-242. https://doi.org/10.3993/jfbi09201201.
  36. De Moraes MA, Weska RF, Beppu MM. Effects of sterilization methods on the physical, chemical, and biological properties of silk fibroin membranes. J Biomed Mater Res B Appl Biomater. 2014; 102(4): 869-876. https://doi.org/10.1002/jbm.b.33069
  37. KosawatnakulS, NakpathomM, Bechtold T, Aldred AK, Chemical finishing of cotton fabric with silk fibroin and its properties. Cellulose Chem Technol. 2018; 52(1-2): 123-128. 
  38. Gholamzadeh L, ZareMehrjardi A., Bismuth (III) oxide (Bi2O3)/poly (vinyl alcohol) nanocomposite fiber coated polyester fabrics for multifunctional applications. Clean Technol Environ Policy, 2023, 24:1-10. https://doi.org/10.1007/s10098-023-02533-z.
  39. Peng H, Yang C Q, Wang S. Nonformaldehyde durable press finishing of cotton fabrics using the combination of maleic acid and sodium hypophosphite. Carbohyd Polym. 2012; 87(1): 491-499. htps://doi.org/ 10. 1016/j.carbpol.2011.08.013.
  40. Jang MJ, Um IC, Effect of sericin concentration and ethanol content on gelation behavior, rheological properties, and sponge characteristics of silk sericin. Eur Polym J. 2017; 93:761-774. https://doi.org/10. 1016/j.eurpo lymj.2017.03.048.
  41. Aramwit P, Siritientong T, Kanokpanont S, Srichana T, Formulation and characterization of silk sericin-PVA scaffold crosslinked with genipin. Int J Biol Macromol. 2010; 47: 668-675. https://doi.org/10. 1016/j. ijbio mac.
  42. Sahi AK, Varshney N, Poddar S, Gundu S,  Mahto SK, Fabrication and characterization of silk fibroin-based nanofibrous scaffolds supplemented with gelatin for corneal tissue engineering. Cells Tissues Organs. 2021; 210(3): 173-194. https://doi.org/10.1159/ 00051 5946. 
  43. Cardenas T GA, Sanzana L JO, InoccentiniMEI LH. Synthesis and characterization of chitosan-PHB blends, Bol Soc Chil Quim. 2002; 47(4): 529-535. https://doi.org/10.4067/S0366-16442002000400025.
  44. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials. 2003; 24(2): 357-365. https://doi.org/10.1016/S0142-9612(02)00326-5.
  45. Chen X, Knight DP, Shao Z, Vollrath F., Regenerated bombyx silk solutions studied with rheometry and FTIR. Polymer 2001;42(25):09969-09974. https://doi. org/10.1016/S0032-3861(01)00541-9.
  46. Zhang KH, Ye Q, Yan Z Y. Influence of post-treatment with 75% (v/v) ethanol vapor on the properties of SF/P(LLA-CL) nanofibrous scaffolds. Int J Mol Sci. 2012; 13(2): 2036-2047. https://doi. org/10.3390/ijms13022036.
  47. Puerta M, Arango MC, Jaramillo-Quiceno N, Álvarez-López C, Restrepo-Osorio A. Influence of ethanol post-treatments on the properties of silk protein materials. SN Appl Sci. 2019; 1(11):1443. https://doi.org/10.1007/s42452-019-1486-0.
  48. Ki CS, Kim JW, Oh HJ, Lee KH, Park YH, The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. Int J Biol Macromol. 2007; 41(3): 346-353. https://doi.org/ 10.1016/j.ijbiomac.2007.05.005.
  49. Lamboni L, Gauthier M, Yang G, Wang Q., Silk sericin: a versatile material for tissue engineering and drug delivery. Biotechnol Adv. 2015;33(8),1855-1867. https://doi.org/ 10.1016/j.biotechadv. 2015. 10.014.
  50. Weska RF, Vieira Jr WC, Nogueira GM, Beppu MM., Effect of freezing methods on the properties of lyophilized porous silk fibroin membranes. Mater Res. 2009; 12: 233-237. https://doi.org/10.1590/S1516 -14392 00900. 02000 20.
  51. Wu Q, He C, Wang X, Zhang S, Zhang L, Xie R, et al. Sustainable antibacterial surgical suture using a facile scalable silk-fibroin-based berberine loading system. ACS Biomater Sci Eng. 2021; 7(6): 2845-257. https://doi.org/10.1021/acsbiomaterials.1c00481.
  52. Kamoun EA, Kenawy ER, Chen X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017; 8(3): 217-233. https:// doi.org/10.1016/ j. jare. 2017.01.005.
  53. Hossain KS, Ohyama E, Ochi A, Magoshi J, Nemoto N., Dilute-solution properties of regenerated silk fibroin. J Phys Chem B. 2003; 107(32): 8066-8073. https://doi.org/10.1021/jp022490i.