Optical and Morphological Properties of Poly(vinyl chloride) Thin Films with Organic Content Reinforced by Nanoparticles Embedded which is Freestanding

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, College of Engineering, Al-Nahrain University, P.O. Box: 64040, Jadriyah, Baghdad, Iraq

2 Department of Chemistry, College of Science, Al-Nahrain University, P.O. Box: 64021, Jadriyah, Baghdad, Iraq

3 Aeronautical Technical Engineering, Al-Farahidi University, P.O. Box: 10011, Baghdad, Iraq

4 Department of Environmental Science, College of Energy and Environmental Sciences, Al-karkh University of Science, Baghdad, 10080, Iraq

5 Air conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala 56001, Iraq

6 Department of Physics, College of Science, Al-Nahrain University, Baghdad 64021, Iraq

Abstract

Newly modified poly(vinyl chloride) nanocomposite thin films incorporating domperidone as an organic compound and doped with NPs (Co3O4, NiO, and Cr2O3) were fabricated using the casting method. PVC was modified with 25 g of the organic material domperidone (PVC/D) and subsequently doped with 0.01 g of Co3O4, NiO, and Cr2O3 NPs to create the modified nanocomposite thin films, PVC/D/Co3O4, NiO, and Cr2O3, the NPs dimeters was < 50 nm. These films were investigated using diffusive reflectance within the 250-1350 nm wavelength range. The X-ray diffraction (XRD) analysis revealed a semi-crystalline structure for the modified PVC. The optical properties of the modified nanocomposite thin films were assessed, resulting in decreased transmittance and reflectance values, with absorption coefficients ranging from 88 to 94 %. Upon NP doping, the nanocomposite thin films' direct and indirect energy band gaps decreased from 4.7 to 3.0 and 4.3 to 2.9 eV, respectively. This decrease was attributed to an increase in localized states, leading to higher disorder within the material following an increase in Eu from 0.862 to 3.096 eV. Scanning electron microscopy (SEM) analysis illustrated the nanocomposite structure of modified PVC. In contrast, the measurements of atomic force microscopy (AFM) indicated increased surface roughness from 2.31 nm to 6.16 nm for the modified PVC thin films. These modified PVC nanocomposite thin films find potential applications in various industries, including air transport components, light-emitting diodes, laser sensors, UV energy shielding, light-harvesting devices, memory devices, and light-conversion technologies. 

Keywords

Main Subjects


  1. Abed R N, Kadhom M, Ahmed D S, Hadawey A, Yousif E. Enhancing Optical Properties of Modified PVC and Cr2O3 Nanocomposite. Trans Electr Electron Mater. 2021; 22:317-327. https://doi.org/10.1007/ s42341-020-00242-8. 
  2. Omer R M, Al-Tikrity E T B, Abed R N, Kadhom M, Jawad A H, Yousif E. Electrical conductivity and surface morphology of PVB films doped with different nanoparticles. Prog Color Colorant Coat. 2022; 15:191–202. https://doi.org/10.30509/PCCC. 2021. 81718.
  3. Al-Daeif Y, Yousif E and Abdul Nabi M. Synthesis of new polymers derived from poly (vinyl chloride) and study their optical properties. ANJS 2012; 15:79-83. https://doi.org/10.22401/JNUS.15.2.10.
  4. Ameer AA, Abdallh MS, Ahmed AA, Yousif EA. Synthesis and characterization of polyvinyl chloride chemically modified by amines open. J Poly Chem 2013; 3:3-11. https://doi.org/10.4236/ojpchem.2013. 31003.
  5. Abdallh M, Bufaroosha M, Ahmed A, Ahmed DS, Yousif E. Modification of poly(vinyl chloride) substrates via schiff’s base for photochemical applications. J Vinyl Addit Technol. 2020; 26:475-480. https://doi.org/10.1002/vnl.21762 
  6. Yousif EA, Hameed AS, Emaad TB. Synthesis and photochemical study of poly(vinyl chloride)-1,3,4-oxadiazole and 1,3,4-thiadiazole. ANJS. 2007; 10:7-12. https://doi.org/10.22401/JNUS.10.1.04.
  7. Abdallh MS. Synthesis and optical properties study of some metal complexes of poly(vinyl chloride)-pyridine-4-carbohydrazide. ANJS. 2013; 16:24-29. https://doi. org/10.22401/JNUS.16.2.04.
  8. Yousif E, Abdallh M, Hashim H, Salih N, Salimon J, Abdullah BM, et al. Optical properties of pure and modified poly(vinyl chloride). Int J Ind Chem. 2013; 4:1-8. https://doi.org/10.1186/2228-5547-4-4
  9. Yousif E, Ahmed DS, Ahmed AA, Hameed AS, Muhamed SH, Yusop RM, et al. The effect of high UV radiation exposure environment on the novel PVC polymers. Environ Sci Pollut Res. 2019; 26:9945-9954. https://doi.org/10.1007/s11356-019-04323-x 
  10. Abdullah SM, Alwan AF, Majeed AM. The influence of the UV light on the PVC sheets adopted with some aromatic amines. ANJS. 2022; 25: 9-13. https://doi. org/10.22401/ANJS.25.1.02. 
  11. Yousif E, Abdallh M, Hashim H, Ahmed A, Ahmed DS, Yusop RM, Ahmed AA. Enhancement of the photo-chemical properties and efficacy of the mixing technique in the preparation of Schiff base-Cu(II)/poly(vinyl chloride) compounds. Emerg Mater Res. 2019; 2:505-512. https://doi.org/10.1007/s42247-019-00059-z.
  12. Ahmed A. Synthesis and modified of poly(vinyl chloride) contains triazole moieties and studying the optical properties of new polymers. ANJS. 2015; 18:66-73, 2015. https://doi.org/10.22401/JNUS.18.1.09.
  13. Abed RN, Yousif E, Abed ARN, Rashad AA, Hadawey A, Jawad AH. Optical properties of PVC composite modified during light exposure to give high absorption enhancement. J Non-Crys Solids. 2021; 570:120946. https://doi.org/10.1016/j.jnoncrysol. 2021. 120946.
  14. Coiai S, Passaglia E, Pucci A, Ruggeri G. Nanocomposites based on thermoplastic polymers and functional nanofiller for sensor applications. J Mater. 2015; 8:3377-3427. https://doi.org/10.3390/ma8063377
  15. Abdullah AM, Alwan LH, Ahmed AA, Abed RN. Optical properties of polystyrene with carbon nanotube and carbon nano incorporated and surface morphology studies. Int Nano Lett. 2023; 13:165–176. https://doi. org/10.1007/s40089-023-00398-0.
  16. El Sayed AM, Morsi WM. Dielectric relaxation and optical properties of polyvinyl chloride/lead monoxide nanocomposites. Wiley 2013; 34:2031-2039. https://doi.org/10.1002/pc.22611.
  17. Abed RN, Abed ARN, Abed AN, Electrical conductivity of carbon ash surface immersed with nanoparticles (Co3O4-Cr2O3) for spectroscopic selective surfaces. Poly Bull. 2023; 80:11207-11224. https://doi.org/10.1007/s00289-022-04601-8.
  18. Hussein MA, Alam MM, Asiri AM, Al-amshany ZM, Hajeeassa KS, Rahman MM. Ultrasonic-assisted fabrication of polyvinyl chloride/mixed graphene-carbon nanotube nanocomposites as a selective Ag+ ionic sensor. J Comp Mater. 2019; 53:2271–2284. https://doi.org/10.1177/0021998318825293.
  19. Omer RM., Yousif E, Al-Tikrity ETB, Ahmed DS, Ali AA, Abed RNA. Detailed examination of UV radiation effects on the structural and morphological properties of polyvinyl butyral films containing different nanoparticles. Prog Color Colorant Coat. 2021; 14:209-219. https://doi.org/10.30509/PCCC.2021.81718 
  20. Yousif E, Al-Taa'y A, Noaman R, Esmael B, Abdalameer J, Abbas Q, et al. Effect of nano TiO2 on the optical properties of PVC contains triazole moieties. YJES. 2016; 12:1437 H 21-27. https://doi.org/10. 53370/ 001c.24308.
  21. Ebnalwaled AA, Thabet A. Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth Met. 2016; 220:374-383. https://doi.org/10.1016/j.synthmet.2016.07.006. 
  22. Dadoosh RM, Alwan AF, Farhan SA, Jassim BE, Mahmood A, Al-Saadi LG, et al. Study of physicochemical properties of PVC thin films affected by carbon nanotubes to prevent photodegradation during UV light exposure. Prog Color Colorant Coat. 2024; 17:307-324. https://doi.org/ 10.30509/pccc.2024. 167260.1275.   
  23. Abdallh M, Hamood O, Yousif E. Study the optical properties of poly (vinyl alcohol) doped cupper chloride. ANJS, 2013; 16:17-20. https://doi.org/ 10. 22401/JNUS.16.1.03.
  24. Mohammed SA, Yusop RM, Abdulsattar M, Abed RN, Ahmed DS, Ahmed A, et al. Additives aid switch to protect the photodegradation of plastics in outdoor construction. NJES. 2019; 22:277-282. http://doi.org/ 10. 29194/ NJES.22040277. 
  25. Abed RN, Zainulabdeen K, Abdallh M, Yousif E, Rashad AA, Jawad AH. The optical Properties Behavior of Modify Poly(Methyl Methacrylate) Nanocomposite Thin Films during solar energy absorption. J Non-Cryst Solid. 2023; 609:122257. https://doi.org/10.1016/j.jnoncrysol.2023.122257.  
  26. Hassanien AS, Aly KA, Elsaeedy HI, Alqahtani A. Optical characterization and dispersion discussions of the novel thermally evaporated thin a-S50-xGe10CdxTe40 films. Appl Phys.A. 2022; 128: 1021. https://doi.org/10.1007/s00339-022-06127-2.
  27. Abed RN, Abed ARN, Khamas FA, Abdallh M, Yousif E. High performance thermal coating comprising (CuO:NiO) nanocomposite/C spectrally selective to absorb solar energy. Prog Color Colorant Coat. 2020; 13:275-284. https://doi.org/10.30509/ PCCC.2020.81662.
  28. Abdullah AM, Alwan LH, Ahmed AA, Abed RN. Optical and physical properties for the nanocomposite poly(vinyl chloride) with affected of carbon nanotube and nano carbon. Prog Color Colorant Coat. 2023; 16:331-345. https://doi.org/10.30509/PCCC.2023. 167082. 1198.
  29. Hadi, AG, Jawad K, El-Hiti GA, Alotaibi MH, Ahmed AA, Ahmed DS. et al. Photostabilization of poly(vinyl chloride) by organotin(IV) compounds against photodegradation. Molecules. 2019; 24: 3557, 1-15. https://doi.org/10.3390/molecules24193557.
  30. Mariappan R, Ponnuswamy V, Ragavender M. Characterization of CdS1-xSex thin films by chemical bath deposition technique. Optik. 2012; 123:1196-1200. https://doi.org/10.1016/j.ijleo.2011.07.050.
  31. Dolai S, Sarangi SN, Hussain S, Bhar R, Pal AK. Magnetic properties of nanocrystalline nickel incorporated CuO thin films. J Magn Magn Mater. 2019; 479:59-66. https://doi.org/10.1016/j.jmmm.2019. 02.005. 
  32. Abdullah AM, Alwan LH, Ahmed AA, Abed RN. Physical study of PVA filled with carbon nanotube and nano carbon with roughness morphology. J Phys Chem Res. 2023; 11:747-760. https://doi.org/10.22036/ PCR.2022.362088.2195.
  33. Abed RN, Al-Sahib NK, Khalifa AJN. Energy gap demeanor for carbon doped with chrome nanoparticle to increase solar energy absorption. Prog Color Colorant Coat. 2020; 13:143-154. https://doi.org/10. 30509/ PCCC.2020.81613.  
  34. Al-Bataineh QM, Alsaad AM, Ahmad AA, Al-Sawalmih A. Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol-gel method versus Ab iInitio calculations. J Electron Mater. 2019; 48:5028-5038. https://doi.org/10.1007/s11664-019-07303-6.
  35. Abed RN, Abed ARN, Yousif E. Carbon surfaces doped with (Co3O4-Cr2O3) nanocomposite for high-temperature photo thermal solar energy conversion via spectrally selective surfaces. Prog Color Colorant Coat. 2021; 14:301-315. https://doi: 10.30509/pccc.2021. 166749.1098.  
  36. Abed RN, Abdallh M, Rashad AA, Hadawey ., Yousif E. New coating synthesis comprising CuO:NiO/C to obtain highly selective surface for enhancing solar energy absorption. J Polym Bull. 2021; 78:433-455. https://doi.org/10.1007/s00289-020-03115-5
  37. Pankove JI. Optical Processes in Semiconductors, book, Dover Publications Inc., New York, NY, USA 1975. p. 91.  
  38. Ahmed A, Abed RN, Kadhom M, Hashim H, Akram E, Jawad A, et al. Modification of poly (vinyl chloride) thin films with organic compound and nanoparticles for solar energy applications. J Polym Res. 2023; 30. https://doi.org/10.1007/s10965-023-03654-1.
  39. Abed RN, Yousif E, Abed ARN, Rashad AA. Synthesis thin films of poly(vinyl chloride) doped by aromatic organosilicon to absorb the incident light. Silicon. 2022; 14:11829-11845. https://doi.org/10.1007/ s12633-022-01893-3.
  40. Abed RN. Al-Mashhadani MH, Yousif E, Hashim H, Yusop RM, Bufaroosha M. Organosilane-doped PVC lattice thin film for optoelectronic applications. J Opt. 2023. https://doi.org/10.1007/s12596-023-01351-2 
  41. Fasasi A, Osagie E, Pelemo D, Obiajunwa E, Ajenifuja E, Ajao J, et al. Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Am J Mater Synth Process. 2018; 3:12-22. https://doi.org/10.11648/j.ajmsp.20180302.12. 
  42. Souri D, Tahan ZE. A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl Phys B. 2015; 119:273-279. https://doi.org/10.1007/s00340-015-6053-9. 
  43. Alsaad AM, Al Bataineh QM, Ahmad AA, Albataineh Z, Telfah A. Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik. 2020; 211: 164641. https://doi.org/10.1016/j.ijleo. 2020. 164641
  44. Abdullah AM, Alwan LH, Ahmed AA, Abed RN, Optical and physical properties for the nanocomposite poly(vinyl chloride) with affected of carbon nanotube and nano carbon. Prog Color Colorant Coat. 2023; 16:331-345. https://doi.org/10.30509/PCCC.2023. 167082. 1198.
  45. Hassanien A., Akl AA. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattice Microst. 2016; 89:153-169. https://doi.org/10.1016/j.spmi.2015.10.044.
  46. Abed RN, Sattar MA, Hameed SS, Ahmed DS, Al-Baidhani M, Kadhom M. Optical and morphological properties of poly(vinyl chloride)-nano-chitosan composites doped with TiO2 and Cr2O3 nanoparticles and their potential for solar energy applications. Chem Papers. 2023; 77: 757-769. https://doi.org/10.1007/ s11696- 022- 02512-6.
  47. Abed ARN, Abed RN. Characterization effect of copper oxide and cobalt oxide nanocomposite on poly(vinyl chloride) doping process for solar energy applications. Prog Color Colorant Coat. 2022; 15:235-241.https://doi.org/10.30509/PCCC.2021.166858.1123.
  48. Hassanien AS, Neffati R, Aly KA. Impact of Cd-addition upon optical properties and dispersion parameters of thermally evaporated CdxZn1−xSe films: Discussions on bandgap engineering, conduction and valence band positions. Optik. 2020; 212:164681. https://doi.org/10.1016/j.ijleo.2020.164681.
  49. Hassanien AS, Akl AA, El Redaf IM. Optical characteristics of the novel nanosized thin ZnGa2S4 films sprayed at different deposition times: Determination of optical band-gap energy using different methods. Emergent Mater. 2023; 6:943-964. https://doi.org/10.1007/s42247-023-00493-0. 
  50. Hassanien AS, El Radaf IM. Effect of fluorine doping on the structural, optical, and electrical properties of spray deposited Sb2O3 thin films. Mater Sci Semicond Proc. 2023; 160:107405. https://doi.org/10.1016/j.mssp. 2023.107405.  
  51. Emir P, Kuru D. Boron nitride quantum dots/polyvinyl butyral nanocomposite films for the enhanced photoluminescence and UV shielding properties. J Appl Polym Sci. 2024; 141:55171. https://doi.org/10. 1002/ app.55171.