A Micro-Analytical Approach for Pigments Identification on Qajarid Wooden Panels in Isfahan: Identification of Conichalcite as a Degradation Product of Emerald Green

Document Type : Original Article

Authors

1 Department of Archaeometry and Conservation, Faculty of Cultural Materials Conservation, Tabriz Islamic Art University, P.O. Box: 15385-4567, Tabriz, Iran

2 Department of Objects Conservation and Archaeometry, Art University of Isfahan, Hakim-Nezami St, P.O. Box: 1744, Isfahan, Iran

Abstract

Decorating Iran's historical monuments often involves painting on wood, an area relatively underexplored in research. Examining the color palette utilized by artists in these works can offer valuable insights into the era's commercial, cultural, and economic milieu, while also aiding in identifying deterioration processes and proposing conservation strategies. This study seeks to determine the pigments employed in the paintings on wooden panels of the Shahsavaran House, a structure dating back to the Qajar period in Isfahan city. Utilizing micro-Raman spectroscopy and micro-XRF spectroscopy, the pigment composition of white, green, blue, yellow, and red hues was analyzed. The findings revealed a preliminary layer of white lead applied to the wood surface, followed by the painting execution. Examination of the pigments unveiled the presence of white lead, red lead, chrome yellow, and ultramarine blue. Notably, the green pigment was identified as conichalcite, a pigment not commonly utilized, likely arising from the degradation of emerald green. Furthermore, the presence of massicot alongside white lead in white areas suggests the degradation of white lead in an outdoor environment. The identified pigments in this artwork include lead white, lead red, and ultramarine blue, which are traditional and commonly used pigments in Iranian art-historical works. However, through the identification of chrome yellow and the potential use of emerald green, it is estimated that the paintings can be dated from the mid-19th to the mid-20th century.

Keywords

Main Subjects


  1. Silva CE, Silva LP, Edwards HGMde Oliveira LFC. Diffuse reflection FTIR spectral database of dyes and pigments. Anal Bioanal Chem. 2006; 386(7):2183-91. https://doi.org/10.1007/s00216-006-0865-8.
  2. Franquelo ML, Duran A, Herrera LK, Jimenez de Haro MCPerez-Rodriguez JL. Comparison between micro-Raman and micro-FTIR spectroscopy techniques for the characterization of pigments from Southern Spain Cultural Heritage. J Mol Struct. 2009; 924-926:404-12. https://doi.org/10.1016/j.molstruc. 2008.11.041.
  3. Josa VG, Bertolino SR, Laguens A, Riveros JACastellano G. X-ray and scanning electron microscopy archaeometric studies of pigments from the Aguada culture, Argentina. Microchem J. 2010; 96(2):259-68. https://doi.org/10.1016/j.microc. 2010. 03.010.
  4. Klockenkämper R, Von Bohlen AMoens L. Analysis of pigments and inks on oil paintings and historical manuscripts using total reflection x‐ray fluorescence spectrometry. X‐Ray Spect: An Inter J. 2000; 29(1):119-29. https://doi.org/10.1002/(SICI)1097-4539(200001/02)29:1%3C119.
  5. Koochakzaei A, Alizadeh Gharetapeh SJelodarian Bidgoli B. Identification of pigments used in a Qajar manuscript from Iran by using atomic and molecular spectroscopy and technical photography methods. Heritage Sci. 2022; 10(1):30. https://doi.org/10. 1186/s40494-022-00665-x.
  6. Koochakzaei A, Hamzavi YMousavi Sultanzadeh M. Characterization of the mural blue paintings in ornamental motif of Ali Qapu palace in Isfahan, Iran, using spectroscopic and microscopic methods (a case study). J Archaeological Sci: Rep. 2022; 45:103632. https://doi.org/10.1016/j.jasrep.2022.103632
  7. Floor W. The woodworking craft and its products in Iran. Muqarnas. 2006;23:159-89. https://doi.org/10.1163/22118993_02301008
  8. Ghiasian MR, Mashhadi Nooshabadi M. Ilkhanid Wood Carvings in the Mountain Villages between Kashan and Natanz. Iranian Stud. 2023; 56(2):255-75. https://doi.org/10.1017/irn.2022.72
  9. Koochakzaei A, Marefat-Izadi P. Application of micro-Raman Spectroscopy for Identifying Pigments in Qajar Papier-Mache Penboxes (Qalamdan). J Color Sci Technol. 2024; 18(1): 57-66.  https://dorl.net/dor/ 20.1001.1.17358779.1402.18.1.5.7
  10. Knipe P, Eremin K, Walton M, Babini A, Rayner G. Materials and techniques of Islamic manuscripts. Heritage Sci. 2018; 6(1):55. https://doi.org/ 10.1186/ s40494-018-0217-y.
  11. Koochakzaei A, Mobasher Maghsoud E, Jelodarian Bidgoli B. Non-invasive imaging and spectroscopy techniques for identifying historical pigments: a case study of Iranian manuscripts from the Qajar era. Heritage Sci. 2023; 11(1):157. https://doi.org/10.1186/ s40494-023-01011-5.
  12. Koochakzaei A, Jelodarian Bidgoli B, Naserahari M. A Multi-Analytical Approach to Identify Colorants in the Qajar Painted Wooden Decorative False Ceilings, From Northwest Iran. Microscopy Microanal. 2024; 30(2): 401–414. https://doi.org/10.1093/mam/ozae029
  13. Holakooei P, Karimy A-H, Nafisi G. Lammerite as a degradation product of emerald green: Scientific studies on a rural persian wall painting. Studies Conservation. 2018; 63(7):391-402. https://doi.org/10. 1080/00393630.2017.1419658.
  14. Bruni S, Cariati F, Casadio F, Guglielmi V. Micro-Raman identification of the palette of a precious XVI century illuminated Persian codex. J Cultural Heritage. 2001; 2(4):291-6. https://doi.org/10.1016/ S1296-2074(01)01131-1.
  15. Muralha VSF, Burgio L, Clark RJH. Raman spectroscopy analysis of pigments on 16–17th c. Persian manuscripts. Spectrochimica Acta Part A: Mol Biomol Spect. 2012; 92:21-8. https://doi.org/10.1016/ j. saa.2012.02.020.
  16. Purinton N, Waiters M. A Study of the Materials Used by Medieval Persian Painters. J Am Institute Conserv. 1991; 30(2):125-44. https://doi.org/10.1179/ 019713691806066728.
  17. Corso G, Gelzo M, Chambery A, Severino V, Maro AD, Lomoriello FS, D'Apolito O, Russo AD, Gargiulo P, Piccioli C, Arcari P. Characterization of pigments and ligands in a wall painting fragment from Liternum archaeological park (Italy). J Separation Sci. 2012; 35(21):2986-93. https://doi.org/10.1002/jssc.201200490
  18. Karapanagiotis I, Minopoulou E, Valianou L, Daniilia S, Chryssoulakis Y. Investigation of the colourants used in icons of the Cretan School of iconography. Anal Chimica Acta. 2009;647(2):231-42. https://doi.org/10.1016/j.aca.2009.06.012
  19. Koochakzaei A, Sarhaddi-Dadian H, Oudbashi O, Achachluei MM, Moradi H. Parthian dyed fabric discovered from Kuh-e Khwaja archaeological site, Sistan, Iran: A multi-analytical study for dye identification. J Archaeological Sci: Reports. 2023; 52:104288. https://doi.org/10.1016/j.jasrep. 2023. 104288.
  20. Clark RJH, Mirabaud S. Identification of the pigments on a sixteenth century Persian book of poetry by Raman microscopy. J Raman Spect. 2006; 37(1-3):235-9. https://doi.org/10.1002/jrs.1473.
  21. Haswell R, Carlyle L, Mensch KTJ. Van Gogh’s Painting Grounds: Quantitative Determination of Bulking Agents (Extenders) Using SEM/EDX. Microchimica Acta. 2006; 155(1):163-7. https://doi. org/ 10.1007/s00604-006-0536-7.
  22. Chaplin TD, Clark RJH, Martinón-Torres M. A combined Raman microscopy, XRF and SEM–EDX study of three valuable objects – A large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London. J Mol Struct. 2010; 976(1):350-9. https://doi.org/10.1016/j.molstruc.2010. 03.042.
  23. Dyer J, Verri G, Cupitt J. Multispectral imaging in reflectance and photo-induced luminescence modes: A User Manual. London: British Museum; 2013.
  24. Cosentino A. Identification of pigments by multispectral imaging; a flowchart method. Heritage Science. 2014;2(1):8. https://doi.org/10.1186/2050-7445-2-8.
  25. Cosentino A. Practical notes on ultraviolet technical photography for art examination. Conservar Património. 2015; 215(21):53-62. https://doi.org/10. 14568/cp2015006.
  26. Koochakzaei A, Ghaffari T. Identification of traditional black Persian inks by spectroscopic and spectral imaging techniques: Presenting a flowchart method. Vibrational Spect. 2023; 127:103545. https://doi.org/10.1016/j.vibspec.2023.103545
  27. Daniel F, Mounier A, Pérez-Arantegui J, Pardos C, Prieto-Taboada N, Fdez-Ortiz de Vallejuelo S, Castro K. Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain). Microchem J. 2016; 126:113-20. https://doi.org/10. 1016/j.microc.2015.11.044.
  28. Grabowski B, Masarczyk W, Głomb P, Mendys A. Automatic pigment identification from hyperspectral data. J Cultural Heritage. 2018; 31:1-12. https://doi. org/10.1016/j.culher.2018.01.003.
  29. Koochakzaei A, Oudbashi O. A courtly brocade belt belonging to Qajar period (1789–1925), Iran. Heritage Sc. 2023; 11(1):29. https://doi.org/10.1186/s40494-023-00875-x.
  30. Koochakzaei A, Nemati Babaylou A, Jelodarian Bidgoli B. Identification of Coatings on Persian Lacquer Papier Mache Penboxes by Fourier Transform Infrared Spectroscopy and Luminescence Imaging. Heritage. 2021; 4(3):1962-9. http://dx.doi. org/10.3390/heritage4030111.
  31. Edwards HGM, Villar SEJ, David AR, de Faria DLA. Nondestructive analysis of ancient Egyptian funerary relics by Raman spectroscopic techniques. Anal Chimica Acta. 2004; 503(2):223-33. https://doi.org/ 10.1016/j.aca.2003.10.057.
  32. Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, Ricciardi P, Delaney JK. Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal Methods. 2014; 6(5):1488-500. https://doi.org/10.1039/C3AY41904E.
  33. Bacci M, Picollo M, Trumpy G, Tsukada M, Kunzelman D. Non-invasive identification of white pigments on 20th-century oil paintings by using fiber optic reflectance spectroscopy. J Am Institute Conservation. 2007: 27-37. https://doi.org/10.1179/ 019713607806112413.
  34. Cheilakou E, Troullinos M, Koui M. Identification of pigments on Byzantine wall paintings from Crete (14th century AD) using non-invasive Fiber Optics Diffuse Reflectance Spectroscopy (FORS). J Archaeological Sci. 2014; 41:541-55. https://doi.org /10.1016/j.jas.2013.09.020.
  35. Dupuis G, Elias M, Simonot L. Pigment identification by fiber-optics diffuse reflectance spectroscopy. Appl Spect. 2002; 56(10):1329-36. https://doi.org/10.1016/ j.jas.2013.09.020.
  36. Cultural Heritage Science Open Source (CHSOS). Pigments Checker v.5, FREE Spectra Databases. 2019.
  37. Niknejad M, Karimy A-H. Lead White or Lead Whites? Reconsideration of Methods of sefidāb-i-sorb Production in Iran. Studies Conservation. 2019; 64(1):1-9. https://doi.org/10.1080/00393630.2018.1457290
  38. Bell IM, Clark RJ, Gibbs PJ. Raman spectroscopic library of natural and synthetic pigments (pre-≈ 1850 AD). Spectrochimica Acta Part A: Mol Biomol Spect. 1997; 53(12):2159-79.  https://doi.org/10.1016/S1386-1425(97)00140-6
  39. Roohi S, Holakooei P. Art historical and scientific controversies about four easel paintings attributed to Kamal al-Molk, the renowned nineteenth-twentieth century Persian painter. Heritage Sc. 2023; 11(1):197. https://doi.org/10.1186/s40494-023-01033-z
  40. Barkeshli M. Paint Palette Used by Iranian Masters based on Persian Medieval Recipes. Restaurator International Journal for the Preservation of Library and Archival Mater. 2013; 34(2):101-33. https://doi. org/ 10.1515/res-2013-0007.
  41. Benquerença M-J, Mendes NFC, Castellucci E, Gaspar VMF, Gil FPSC. Micro-Raman spectroscopy analysis of 16th century Portuguese Ferreirim Masters oil paintings. J Raman Spect. 2009; 40(12):2135-43. https://doi.org/10.1002/jrs.2383
  42. Costantini I, Lottici PP, Castro K, Madariaga JM. Use of Temperature Controlled Stage Confocal Raman Microscopy to Study Phase Transition of Lead Dioxide (Plattnerite). Minerals. 2020; 10(5):468. http://dx.doi.org/10.3390/min10050468
  43. Gliozzo EIonescu C. Pigments—Lead-based whites, reds, yellows and oranges and their alteration phases. Archaeol Anthropol Sci. 2021; 14(1):17. https://doi. org/10.1007/s12520-021-01407-z.
  44. Osticioli I, Mendes NFC, Nevin A, Gil FPSC, Becucci M, Castellucci E. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochimica Acta Part A: Mol Biomol Spect. 2009;73(3):525-31. https://doi.org/10.1016/j.saa.2008.11.028
  45. Koochakzaei A, Hamzavi Y, Shojae far F. Identification of red, blue and golden pigments in Qajar Mural Painting anaclitic fire place in Goharion House in Tabriz. J Color Sci Technol. 2022; 15(4):287-99. https://dorl.net/dor/20.1001.1.17358779.1400.15.4.3.4
  46. Holakooei P, Karimy A-H, Vaccaro C. A multi-analytical approach to the examination of nineteenth-century European wallpapers in Vasiq-Ansari House in Isfahan, Iran. Studies Conservation. 2014; 59(3):150-60. https://doi.org/10.1179/2047058413Y.0000000091
  47. Oudbashi O, Shekofteh A, Eskandari N. Provenance of the Bronze Age lapis lazuli pieces from the Early Urban Center of Konar Sandal, Jiroft, Southern Iran. J Archaeol Sci: Rep. 2024; 55:104527. https://doi.org/ 10. 1016/j.jasrep.2024.104527. 
  48. Eastaugh N, Walsh V, Chaplin T, Siddall R. Pigment Compendium: A Dictionary and Optical Microscopy of Historical Pigments. London: Routledge; 2008.
  49. Monico L, Janssens K, Hendriks E, Brunetti BG, Miliani C. Raman study of different crystalline forms of PbCrO4 and PbCr1−xSxO4 solid solutions for the noninvasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. J Raman Spect. 2014;45(11-12):1034-45. https://doi. org/ 10.1002/jrs.4548.
  50. Monico L, Janssens K, Miliani C, Brunetti BG, Vagnini M, Vanmeert F, Falkenberg G, Abakumov A, Lu Y, Tian H, Verbeeck J, Radepont M, Cotte M, Hendriks E, Geldof M, van der Loeff L, Salvant J, Menu M. Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 3. Synthesis, Characterization, and Detection of Different Crystal Forms of the Chrome Yellow Pigment. Anal Chem. 2013; 85(2):851-9. https://doi.org/10.1021/ac302158b
  51. Otero V, Carlyle L, Vilarigues M, Melo MJ. Chrome yellow in nineteenth century art: historic reconstructions of an artists' pigment. RSC Adv. 2012; 2(5):1798-805. https://doi.org/10.1039/C1RA00614B.
  52. Petrova O, Pankin D, Povolotckaia A, Borisov E, Krivul’ko T, Kurganov N, Kurochkin A. Pigment palette study of the XIX century plafond painting by Raman spectroscopy. J Cultural Heritage. 2019; 37:233-7. https://doi.org/10.1016/j.culher.2018.11.010
  53. Reddy BJ, Frost RL, Martens WN. Characterization of conichalcite by SEM, FTIR, Raman and electronic reflectance spectroscopy. Mineralogical Magazine. 2005; 69(2):155-67. https://doi.org/10.1180/ 0026461056920243.
  54. Shen L, Wang C, Zhang J, Cui B, Zhu S, Mao J. Cu and As containing pigments in Zhejiang architecture polychrome paintings: a case study of degradation products of emerald green. Heritage Sci. 2023;11(1):9. https://doi.org/10.1186/s40494-022-00834-y.
  55. Chen E, Zhang B, Lin Y, Meng C. Research on painting pigments and binders in Murals of traditional buildings in Zhejiang Province. Orient Mus. 2018;3:107-13. 
  56. Aggelakopoulou E, Sotiropoulou S, Karagiannis G. Architectural polychromy on the athenian acropolis: an in situ non-invasive analytical investigation of the colour remains. Heritage. 2022; 5(2):756-87. http://dx.doi.org/10.3390/heritage5020042
  57. Svorová Pawełkowicz S, Wagner B, Kotowski J, Żukowska GZ, Gołębiowska B, Siuda R, Jokubauskas P. Antimony and nickel impurities in blue and green copper pigments. Minerals. 2021; 11: 1236. https://doi.org/10.3390/min11111236.
  58. Tsatsouli K, Nikolaou E. The ancient Demetrias figurines: new insights on pigments and decoration techniques used on Hellenistic clay figurines. STAR: Sci Technol Archaeol Res. 2017; 3(2):341-57. https://doi.org/10.1080/20548923.2018.1424302
  59. Herm C, Emerald green versus Scheele’s green: evidence and occurrence. Proceedings of the 7th interdisciplinary ALMA conference, Bratislava, Slovakia; 2019. pp.189-202.
  60. Bioletti S, Leahy R, Fields J, Meehan B, Blau W. The examination of the Book of Kells using micro-Raman spectroscopy. J Raman Spect. 2009; 40(8):1043-9. https://doi.org/10.1002/jrs.2231.