Synthesis and Characterization of Nonmetal-doped TiO2 Nanoparticles for Photocatalytic Degradation of Rhodamine B Dye

Document Type : Original Article

Authors

Physics and Accelerators Research School, Nuclear Science & Technology Research Institute (NSTRI), P.O. Box: 11365-3486, Tehran, Iran

Abstract

A novel series of C-, N-, and F-doped TiO2 photocatalysts were fabricated using a simple sol-gel method, utilizing 4-(trifluoromethyl)nicotinic acid (TFNA) as a precursor for carbon, nitrogen, and fluorine doping. The resulting materials were characterized using different advanced techniques such as X-ray Diffraction (XRD), Diffuse Reflectance Spectroscopy (DRS), Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), and Field Emission Scanning Electron Microscopy (FESEM). The synthesis approach involved the creation of nanoparticles with varying weights of TFNA, ranging from 0.3 to 1.6 wt. %, followed by calcination at 400 °C for 120 min in the presence of air. The resulting nanostructures were tested for their efficiency in degrading rhodamine B (RhB) dye under ultraviolet (UV) light irradiation. The experimental findings revealed that the 1.6 wt. % TFNA/TiO2 composite exhibited exceptional photocatalytic activity, with approximately 87.0 % degradation efficiency towards RhB dye in aqueous solutions under UV light. This remarkable performance can be attributed to the increased lifetime of photogenerated electron-hole pairs and accelerated interfacial charge transfer rates.

Keywords

Main Subjects


  1. Ahmad M, Qureshi MT, Rehman W, Alotaibi NH, Gul A, Abdel Hameed RS et al. Enhanced photocatalytic degradation of RhB dye from aqueous solution by biogenic catalyst Ag@ZnO. J Alloys Compd. 2022; 895: 162636. https://doi.org/10.1016/j. jallcom.2021.162636.
  2. Rafiq A, Ikram M, Ali S, Niaz F, Khan M, Khan Q, et al. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem. 2021; 97(25): 111-128. https://doi.org/10.1016/j.jiec.2021.02.017.
  3. Noukelag SK, Razanamahandry LC, Ntwampe SKO, Arendse CJ, Maaza M. Industrial dye removal using bio-synthesized Ag-doped ZnO nanoparticles. Environ Nanotechnol Monit Manag. 2021; 16: 100463. https://doi.org/10.1016/j.enmm.2021.100463.
  4. Panchal D, Sharma A, Pal S. Novel photocatalytic techniques for organic dye degradation in water In Photocatalytic Degradation of Dyes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1-22.
  5. Shreema K, Mathammal R, Kalaiselvi V, Vijayakumar S, Selvakumar K, Senthil K, Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract Morinda citrifoliaand its antioxidant potential. Mater Today: Proc. 2021; 47: 2126-2131. https://doi.org/10. 1016/j.matpr.2021.04.627.
  6. Abutalib MM, Rajeh A. Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite. Phys B: Condens. 2020; 578(1): 411796. https://doi. org/10.1016/j.physb.2019.411796.
  7. Panchal P, Paul DR, Sharma A, Hooda D, Yadav R, Meena P, et al. Phytoextract mediated ZnO/MgO nanocomposites for photocatalytic and antibacterial activities. J Photochem Photobiol A: Chem. 2019; 385: 112049. https://doi.org/10.1016/j.jphotochem. 2019. 112049.
  8. Xie Y, Liu T, Chu Z, Jin W. Recent advances in electrochemical enzymatic biosensors based on regular nanostructured materials. J Electroanal Chem. 2021; 893(15): 115328. https://doi.org/10.1016/j. jelechem.2021.115328.
  9. Khalid NR, Mazia U, Tahir MB, Niaz NA, Javid MA. Photocatalytic degradation of RhB from an aqueous solution using Ag3PO4/N-TiO2 heterostructure. J Mol Liq. 2020; 313(1): 113522. https://doi.org/10.1016/j. molliq.2020.113522.
  10. Rotami M, Hamadanian M, Rahimi-Nasrabadi M, Ganjali MR. Sol-gel preparation of metal and nonmetal-codoped TiO2–graphene nanophotocatalyst for photodegradation of MO under UV and visible-light irradiation. Ionics. 2019; 25: 1869-1878. https://doi. org/10.1007/s11581-019-02861-5.
  11. Ton NNT, Dao ATN, Kato K, Ikenaga T, Trinh DX, Taniike T. One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon. 2018; 133: 109-117. https://doi.org/10.1016/j. carbon.2018.03.025.
  12. Nenavathu BP, Kandula S, Verma S. Visible-light-driven photocatalytic degradation of safranin-T dye using functionalized graphene oxide nanosheet (FGS)/ZnO nanocomposites. RSC Adv. 2018; 8: 19659-19667. https://doi.org/10.1039/C8RA02237B.
  13. Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K, Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Appl Catal B. 2009; 91(3-4): 657-662. https://doi.org/10.1016/j.apcatb.2009.07.006
  14. Yang X, Cao C, Hohn K, Erickson L, Maghirang R, Klabunde K. Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. J Catal. 2007; 252(2): 296-302. https://doi.org/10.1016/j.jcat. 2007.09.014.
  15. Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K. Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J Catal. 2008; 260(1): 128-133. https://doi.org/10.1016/ j.jcat.2008.09.016.
  16. Lee J S, You KH, Park C B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater. 2012; 24(8): 1084-1088. https://doi.org /10.1002/adma.201104110.
  17. Jiang L, Gao X, Chen S, Ashok J, Kawi S. Oxygen-Deficient WO3/TiO2/CC Nanorod Arrays for Visible-Light Photocatalytic Degradation of Methylene Blue. Catalysts. 2021; 11(11): 1349. https://doi.org/10.3390/ catal11111349..