Effect of the Coating Formulation on the Barrier Properties and Final Appearance of Non-wettable Hybrid Paper Sheets

Document Type : Original Article

Authors

1 Faculty of Science, Material Science and Technologies, Turkish-German University, P.O. Box: 34820, Istanbul, Turkey

2 Faculty of Applied Technologies, Department of Printing Technologies, Marmara University, P.O. Box: 34722, Istanbul, Turkey

3 Faculty of Technology, Textile Engineering Department, Marmara University, P.O. Box: 34722, Istanbul, Turkey

Abstract

Thin coating layers of cross-linked polydimethylsiloxane (PDMS) and inorganic particles including glass spheres (GS), colloidal and fumed silica (aero and N20), montmorillonite (MMT), and kaolin (K) were attached onto Grade 1 Whatman filter paper (WFP) substrates using the spray-coating procedure to achieve superhydrophobic hybrid paper sheets. Coating formulations were varied in terms of their PDMS molecular masses and inorganic particles to prepare different samples. The effect of PDMS molecular weight and change in inorganic particle composition on the optical properties, surface roughness, barrier properties, surface chemistry, and topography was investigated. Hybrid paper sheets with ΔE00 values lower than 1 could be achieved, the surface roughness of which could be decreased by increasing the PDMS molecular weight in the coating formulation. Scanning electron microscopy studies revealed a homogeneous coating distribution, resulting in significant improvements in both the air and water barrier properties of the hybrid paper sheets. Spectroscopic investigations revealed the presence of interactions between the coating layer and the underlying paper substrate. Moreover, the distribution behavior of the inorganic particles on the spray-coated surfaces using the proposed method was also investigated using model compounds. 

Keywords

Main Subjects


  1. Bian P, Wang Y, Mc Carthy TJ. Rediscovering Silicones: The anomalous water permeability of “hydrophobic” PDMS suggests nanostructure and applications in water purification and anti-icing. Macromol Rapid Commun. 2021; 42: 2000682. https://doi.org/10.1002/marc.202000682.
  2. Chen H, Wang B, Li J, Ying G, Chen F. High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose. Carbohyd Polym 2022; 288: 119371. https://doi.org/ 10.1016/j.carbpol.2022.119371.
  3. Eduok U, Faye O, Szpunar J, Khaled M. Effect of silylating agents on the superhydrophobic and self-cleaning properties of siloxane/ polydimethylsiloxane nanocomposite coatings on cellulosic fabric filters for oil–water separation. RSC Adv 2021; 11: 9586-9599. https://doi.org/10.1039/D0RA10565A.
  4. Ibrahim SA, Sultan MZ. Superhydrophobic coating polymer/silica nanocomposites: enhancing water vapor barrier properties of packaging paper with ultra-thin PS/silica nanocomposite polymer coating. Egypt J Chem. 2019; 62: 131-139. https://doi.org/10.21608/ EJCHEM.2018.3842.1374.
  5. Jia W, Kharraz JA, Choi PJ, Guo J, Deka BJ. An, A.K. Superhydrophobic membrane by hierarchically structured PDMS-POSS electrospray coating with cauliflower-shaped beads for enhanced MD performance. J Membr Sci. 2020; 597: 117638. https://doi.org/10.1016/j.memsci.2019.117638.
  6. Lafraya A, Prieto C, Pardo-Figuerez M, Chiva A, Lagaron JM. Super-repellent paper coated with electrospun biopolymers and electrosprayed silica of interest in food packaging applications. Nanomaterials. 2021; 11: 3354. https://doi.org/10. 3390/nano11123354.
  7. Li H, He Y, Yang J, Wang X, Lan T, Peng L. Fabrication of food-safe superhydrophobic cellulose paper with improved moisture and air barrier properties. Carbohydr Polym. 2019; 211: 22-30. https://doi.org/10.1016/j.carbpol.2019.01.107.
  8. Li X, Cao M, Shan H, Tezel FH, Li B. Facile and scalable fabrication of superhydrophobic and superoleophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation. Chem Eng J. 2019; 358: 1101-1113. https://doi.org/10. 1016/j.cej.2018.10.097.
  9. Li A, Wang G, Zhang Y, Zhang J, He W, Ren S, Xu Z, Wang J, Ma Y. Preparation methods and research progress of superhydrophobic paper. Coord Chem Rev. 2021; 449: 214207. https://doi.org/10.1016/ j.ccr.2021.214207.
  10. Mai Z, Shu X, Li G, Chen D, Liu M, Xu W, Zhang H. One-step fabrication of flexible, durable and fluorine-free superhydrophobic cotton fabrics for efficient oil/water separation. Cellulose 2019, 26: 6349-6363. https://doi.org/10.1007/s10570-019-02515-9.
  11. Ni L, Zhu C, Zhang S, Cai P, Airoudj A, Vonna L, Hajjar-Garreau S, Chemto A. Light-induced crystallization-driven formation of hierarchically ordered superhydrophobic sol-gel coatings. Prog Org Coat. 2019; 135: 255-262. https://doi.org/10.1016/j. porgcoat.2019.05.045.
  12. Abed RN, Kadhom M, Ahmed DS, Hadawey A, Yousif E. Enhancing Optical Properties of Modified PVC and Cr2O3 Nanocomposite. Trans Electr Electron Mater. 2021; 22: 317–327. https://doi.org/10.1007/ s42341-020-00242-8.
  13. Abed RN, Abed ARN, Yousif E. Carbon surfaces doped with (Co3O4-Cr2O3) nanocomposite for high-temperature photo thermal solar energy conversion via spectrally selective surfaces. Prog Color Colorants Coat. 2021; 14: 301-315. https://doi.org/10.30509/ PCCC.2021.166749.1098.
  14. Omer RM, Al-Tikrity ETB, Abed RN, Kadhom M, Jawad AH, Yousif E. Electrical conductivity and surface morphology of PVB films doped with different nanoparticles. Prog Color Colorants Coat. 2022; 15: 191-202. https://doi.org/10.30509 /pccc. 2021.166839.1120.
  15. Abed RN, Abdallh M, Rashad AA, Hadawey A, Yousif E. New coating synthesis comprising CuO:NiO/C to obtain highly selective surface for enhancing solar energy absorption. J Polym Bull. 2021; 78: 433-455. https://doi.org/10.1007/s00289-020-03115-5.
  16. Ruan X, Xu T, Chen D, Ruan Z, Hu H. Superhydrophobic paper with mussel-inspired polydimethylsiloxane–silica nanoparticle coatings for effective oil/water separation. RSC Adv. 2020; 10: 8008-8015. https://doi.org/10.1039/c9ra08018j.
  17. Teng Y, Wang Y, Shi B, Chen Y. Facile preparation of economical, eco-friendly superhydrophobic surface on paper substrate with excellent mechanical durability. Pro Org Coat. 2020; 105877. https://doi. org/10.1016/j.porgcoat.2020.105877
  18. Barthwal S, Barthwal S., Singh B, Singh NB. Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloids Surf, A 2020; 597: 124776. https://doi.org/10. 1016/j.colsurfa.2020.124776
  19. Teng Y, Wang Y, Shi B, Li X, Chen Y. Robust superhydrophobic surface fabrication by fluorine-free method on filter paper for oil/water separation. Polym Test 2020; 91: 106810. https://doi.org/10. 1016/j. polymertesting.2020.106810
  20. Zhang J., Zhang L, Gong X. Large-scale spraying fabrication of robust fluorine-free superhydrophobic coatings based on dual-sized silica particles for effective antipollution and strong buoyancy. Langmuir. 2021; 37: 6042-6051. https://doi.org/10. 1021/acs.langmuir.1c00706
  21. Ma Y, He Q. Preparation of superhydrophobic conductive CNT/PDMS film on paper by foam spraying method. Colloids Surf A. 2022; 648: 129327. https://doi.org/10.1016/j.colsurfa.2022.129327
  22. Li H, Luo Y., Yu, F. Peng, L. Simple and scalable preparation of robust and magnetic superhydrophobic papers by one-step spray-coating for efficient oil-water separation. Colloids Surf A. 2022; 640: 128449. https://doi.org/10.1016/j.colsurfa.2022.128449
  23. Benselfeld T, Pettersson T, Wagberg L. Influence of surface charge density and morphology on the formation of polyelectrolyte multilayers on smooth charged cellulose surfaces. Langmuir. 2017,33(4): 968-979.https://doi.org/10.1021/acs.langmuir. 6b04217.
  24. Heymann E, Rabinov G. The acid nature of cellulose. I equilibria between cellulose and salts. J Phy Chem. 1941; 45: 1152-1166. https://doi.org/10.1021/j 150413a002.
  25. Österberg M, Claesson PM. Interactions between cellulose surfaces: effect of solution pH. J Adhes Sci Technol. 2000; 14(5): 603-618. https://doi.org/10. 1163/156856100742771.
  26. Zhou Z, Ju X, Chen J, Wang R, Zhong Y, Li L. Charge-oriented strategies of tunable substrate affinity based on cellulase and biomass for improving in situ saccharification: A review. Bioresour Technol. 2021; 319: 12415. https://doi.org/10.1016/j.biortech.2020. 124159.
  27. Söz, C. Mechanical and wetting properties of coated paper sheets with varying 1 polydimethylsiloxane molecular masses in the coating formulation. Turk J Chem. 2022; 46: 283-294. https://doi.org/10.3906/ kim-2104-57.
  28. Kaya SS, Doğru D, Adeel S, Özomay M, Özomay Z. Environmentally friendly dyeing of waste cellulose fiberwith natural dye extract obtained from walnut shell (juglans regia), In: 4. International Cappadocia Scientific Research Congress, 2023, Nevşehir, Türkiye.
  29. Doğru D, Kaya SS, Adeel S, Özomay M, Özomay Z.  Mıcrowave-Assisted Dyeing Of Cotton Fabric Using Turkey Oak (Quercus Cerrıs L.) As A Source Of Natural Dye. In: 4. International Antalya Scientific Research And Innovative Congress, 2023, Turkey.
  30. Hayta P, Oktav M, Ateş Ö, Özomay Z. Printability analysis of cyan color offset printing ink prepared with renewable materials. Anatolian J Forest Res 2022; 8(11): 111-115. https://doi.org/10.53516/ ajfr.1204219.
  31. Krumpfer JW, McCarthy TJ. Rediscovering silicones: “unreactive” silicones react with inorganic surfaces. Langmuir. 2011; 27: 11514-11519. https://doi.org/10. 1021/la202583w.
  32. Söz CK, Trosien S, Biealski M. Superhydrophobic hybrid paper sheets with janus type wettability. ACS Appl Mater Interfaces. 2018; 19(43): 37478-37488. https://doi.org/10.1021/acsami.8b12116.
  33. Söz CK, Özomay Z, Ünal S, Uzun M, Sönmez S. Development of a nonwetting coating for packaging substrate surfaces using a novel and easy to implement method. Nord Pulp Pap Res J. 2021: 36(2): 331–342. https://doi.org/10.1515/npprj-2021-0017
  34. Wacker Chemie Ag. HDK® N20 Pyrogenic Silica. [Internet] 2023 [cited 2023 Nov 22] Avaible from: https://www.wacker.com/h/en-us/pyrogenic-silica/ hdk- n20/p/000006084.
  35. Sonmez S, Gong R, Fleming III PD, Wu Q, Pekarovicova P. The effects of the interaction of pigment coating with ink on the offset print quality. J Coat Technol. Res. 2022; 19(6): 1851-1858. https://doi.org/10.1007/s11998-022-00656-4.
  36. Massadikova G, Özomay M, Özomay Z, Hasanova R. Analytical characterization of bible and textiles artifacts from sinope balatlar church excavations for conservation purposes. Med Archaeol Archaeom. 2022; 22: 3. https://doi.org/10.5281/zenodo.7268842
  37. Yilgor I, Yilgor E, Kosak Söz, C. Superhydrophobic Polymer Surfaces: Preparation, Properties, and Applications, 1st ed. Engand: Smithers Rapra Technology; 2016.
  38. Mboowa D, Chandra RP, Hu J, Saddler JN. Substrate Characteristics that influence the filter paper assay’s ability to predict the hydrolytic potential of cellulase mixtures. ACS Sustain Chem Eng. 2020; 8(28): 10521-10528.https://doi.org/10.1021/acssuschemeng. 0c02883.
  39. Golizadeh M, Karimi A, Gandomi-Ravandi S, Vossoughib M, Khafajid M, Joghataei MT, Faghihi F. Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers. Carbohyd Polym. 2019; 207: 796-805.https://doi.org/10.1016/j.carbpol.2018. 12.028.
  40. Lombardo S, Thielemans M. Thermodynamics of adsorption on nanocellulose surfaces. Cellulose. 2019; 26: 249-279. https://doi.org/10.1007/s10570-018-02239-2.
  41. Isogai A. Cellulose nanofibers: recent progress and future prospects, J Fiber Sci Technol. 2020; 76(10): 310-326. https://doi.org/10.2115/fiberst.2020-0039.
  42. Sönmez S, Sood S, Stoops M, Fleming III PD, Kecheng L, Wu Q,  Salam  A. Recycling of printed papers and usability in flexo printing packaging. Cellul Chem Technol. 2022; 56(7-8): 851-860. https://doi.org/10.35812/CelluloseChemTechnol.2022.56.76.
  43. Sonmez S, Arslan S. Investigation of the effects on ink colour of lacquer coating applied to the printed substrate in the electrophotographic printing system. Pol J Chem Technol. 2021; 23(2): 35-40. https://doi.org/10.2478/pjct-2021-0014.
  44. Özomay M, Güngör F, Özomay Z. Determination of optimum dyeing recipe with different amount of mordants in handmade cotton fabrics woven with olive leaves by grey relational analysis method. J Text Inst. 2020; 113(6): 1048-1056. https://doi.org/10. 1080/00405000.2021.1908008.
  45. Özomay Z, Şahin C, Keskin B. Investigation of the effect of different screening structures on print quality in digital printing system. Politeknik J. 2021; 24(3): 1213-1217. https://doi.org/10.2339/politeknik.884893.
  46. Yilmaz, U.; Tutus, A.; Sonmez, S. Effects of using recycled paper in inkjet printing system on colour difference. Pigm Resin Technol. 2022; 51(3): 336-343. http://dx.doi.org/10.1108/PRT-03-2021-0032.
  47. Aydemir C, Kasikovic N, Horwath C, Durdevic S. Effect of Paper Surface Properties on Ink Color Change, Print Gloss, and Light Fastness Resistance. Cellul Chem Technol. 2021; 55(1-2): 133-139. http://dx.doi.org/10.35812/CelluloseChemTechnol.2021.55.14.
  48. Kandi SG, Panahi B, Zoghi N. Impact of surface texture from fine to coarse on perceptual and instrumental gloss. Prog Org Coat. 2022; 107028. https://doi.org/10.1016/j.porgcoat.2022.107028.
  49. Yong Q, Chang J, Liu Q, Jiang F, Wei D, Li H. Matt polyurethane coating: correlation of surface roughness on measurement length and gloss. Polymers. 2020; 12(326): 1-12. https://doi.org/10.3390/polym12020326.
  50. Pino A, Pladellorens J, Colom FF, Cusola O, Tosas A. Using laser speckle to measure the roughness of paper. Tappi J. 2011; 10(3): 7-13. https://doi.org/ 10.1117/12.825072.
  51. Khosravani A, Asadollahzade M, Rahmaninia M, Bahramifar N, Azadfallah M. The effect of internal application of organosilicon compounds on the hydrophobicity of recycled OCC paper. Bioresources. 2016; 11: 8257-8268. https://doi.org/10.15376/biores. 11. 4.8257-8268.
  52. Fanta GF, Felker FC, Hay WT, Selling GW. Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes. Ind Crops Prod. 2017; 105: 231-237. https://doi.org/ 10.1016/j.indcrop.2017.04.060.
  53. Rhim JW, Kim JH. Properties of poly(lactide)-coated paperboard for the use of 1-way paper. Cup J Food Sci. 2009, 74(2): 105-111. https://doi/10.1111/j.1750-3841.2009.01073.x.
  54. Rumens CV, Ziai MA, Belsey KE, Batchelor JC, Holder SJ. Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors. J Mater Chem C. 2015; 3: 10091-10098. https://doi.org/10.1039/C5TC01927C.
  55. Shen M, Liao X, Xianyu Y, Liu D, Ding T. Polydimethylsiloxane Membranes Incorporating Metal–Organic Frameworks for the Sustained Release of Antibacterial Agents. ACS Appl Mater Interfaces. 2022; 14(10): 12662-12673. https://doi.org/10.1021/ acsami.1c24921.
  56. Mohammed Salih, S. Fourier Transform-Materials Analysis, 1st ed. In: IntechOpen, 2012, Rijeka, Croatia.
  57. Garside P, Wyeth P. Identification of cellulosic fibres by FTIR spectroscopy - thread and single fibre analysis by attenuated total reflectance. Stud Conserv 2013; 48: 269-275. https://doi.org/10.1179/sic. 2003.48.4.269.
  58. Yilgor E, Eynur T, Kosak C, Bilgin S, Yilgor I, Malay O, Menceloglu Y, Wilkes GL. Fumed silica filled poly(dimethylsiloxane-urea) segmented copolymers: preparation and properties. Polymer. 2011;52:4189-4198. https://doi.org/10.1016/j. polymer. 2011.07.041.
  59. Rubio F, Rubio J, Oteo JL. A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc Lett 1998; 31(1): 199-219. https://doi.org/ 10.1080/00387019808006772.
  60. Ly HQ, Taylor R, Day RJ, Heatley F. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products. J Mater Sci. 2001; 13: 4037-4043. https://doi.org/10. 1023/A: 1017942826657.
  61. Wang F, Chen P, Li X, Zhu B. Effect of colloidal silica on the hydration behavior of calcium aluminate. Chem Mater. 2018; 11: 1849. https://doi.org/10. 3390/ma11101849.
  62. Ilić I, Jović-Jovičić N, Banković P, Mojović Z, Lončarević D.I., Gržetić, Milutinović-Nikolić, A. Adsorption of nicotine from aqueous solutions on montmorillonite and acid–modified montmorillonite. Sci Sintering. 2019; 51: 93-100. https://doi.org/10. 2298/SOS1901093I.
  63. Kim E, Kim S, Kim SS. Preparation and characterization of monodisperse polystyrene-silica nanocomposites. Macromol Res 2015; 23(8): 787-794. https://doi.org/10.1007/s13233-015-3097-y.
  64. Spence A, Kelleher BP. FT-IR spectroscopic analysis of kaolinite–microbial interactions. Vib Spectrosc 2012; 61: 151-155. https://doi.org/10.1016/j. vibspec. 2012.02.019.
  65. Djomgoue P, Njopwouo D. FT-IR Spectroscopy Applied for Surface Clays Characterization. J Surf Eng Mater Adv Technol. 2013; 3: 275-282. http://dx. doi.org/10.4236/jsemat.2013.34037.
  66. Chen M, Chen X, Zhang C, Cui B, Li Z, Zhao D, Wang Z. Kaolin-enhanced superabsorbent composites: synthesis, characterization and swelling behaviors. Polymers. 2021; 13: 1204. https://doi.org/10.3390/ polym13081204.
  67. Meng Y, Wang S, Guob Z, Cheng M, Li J, Li D. Design and preparation of quaternized pectin-Montmorillonite hybrid film for sustained drug release. Int J Biol Macromol. 2020; 154: 413-420. https://doi.org/10.1016/j.ijbiomac.2020.03.140.
  68. Dlaminia DS, Lia J, Mamba MM. Critical review of montmorillonite/polymer mixed-matrix filtration membranes: Possibilities and challenges. Appl Clay Sci. 2018; 168: 21-30. https://doi.org/10.1016/ j.clay. 2018.10.016.
  69. Huang MY, Chen Y, Yan X, Guo XJ, Dong L, Lang WZ. Two-dimensional Montmorillonite membranes with efficient water filtration. J Membr Sci. 2020; 624: 118540. https://doi.org/10.1016/j. clay.2018. 10.016.
  70. Wang Y, Li Z, Wu C, Zhou P, Zhou J, Huo J, Davis K, Konstantinou A, Nguyen H, Cao Y. Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage. Chem Eng J. 2022; 437: 135430. https://doi. org/10.1016/j.cej.2022.135430.
  71. Adeniyi AG, Abdulkareem SA, Emenike EC,  Abdulkareem MT, Iwuozor KO, Amoloye MA, Ahmed II, Awokunle OE. Development and characterization of microstructural and mechanical properties of hybrid polystyrene composites filled with kaolin and expanded polyethylene powder. Results Eng. 2022; 14: 100423. https://doi.org/10. 1016/j.rineng.2022.100423.
  72. Vijayaraghavan J, Jeevakkumar R, Venkatesan G, Rengasamy M, Thivya, J. Influence of kaolin and dolomite as filler on bond strength of polyurethane coated reinforcement concrete. Constr Build Mater. 2022; 325: 126675. https://doi.org/10.1016/j. conbuildmat. 2022.126675
  73. Barthlott W, Neinhuis C. Purity of the sacred Lotus, or escape from contamination in biological surfaces. Planta. 1997; 202: 1-8. https://doi.org/10. 1007/ s004250050096.
  74. Cheng H, Yang J, Liu Q, Zhang J, Frost R L. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite-A mid-infrared and near-infrared study. Spectrochim. Acta, Part A. 2010; 77:856-861. https://doi.org/10.1016/ j.saa.2010.08.018.
  75. Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001; 20: 73-80. https://doi.org/10.1016/S0169-1317(01)00040-0.
  76. Villa RVV, Frías M, Rojas MIS, Vegas I, García R. Mineralogical and morphological changes of calcined paper sludge at different temperatures and retention in furnace. Appl Clay Sci. 2007; 36: 2279-286. https://doi.org/10.1016/j.clay.2006.10.001.
  77. Kumar AH, Ahamed MB, Deshmukh K, Sirajuddeen MS. Morphology, dielectric and EMI shielding characteristics of graphene nanoplatelets, montmorillonite nanoclay and titanium dioxide nanoparticles reinforced polyvinylidenefluoride nanocomposites. J Inorg Organomet Polym Mater 2021; 31: 2003-2016. https://doi.org/10.1007/s10904-020-01869-z.
  78. Wilson J, Cressey G, Cressey B, Cuadros J, Ragnarsdottir KV, Savage D, Shibata M. The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochim Cosmochim Acta. 2006; 70: 323-336. https://doi.org/10.1016/j.gca.2005.09.023.