Effect of Yb-YAG Laser Parameters on the Operating Regime of Plasma Sprayed NiCrAlY Premixed Coatings

Document Type : Original Article

Authors

1 Department of Production Engineering and Metallurgy, University of Technology, P.O. Box: 10066, Baghdad, Iraq.

2 Department of Materials Engineering, University of Technology, P.O. Box: 10066, Baghdad, Iraq.

Abstract

The direct laser melting of plasma sprayed bond coat has the possibility of improving the surface topography and can be done with Yb:YAG laser. In the current paper, laser melting of plasma sprayed coatings of 50 wt. % standard Amdry 963 (Ni24.5Cr6Al0.4Y) and 50 wt. % standard Amdry 9621 (Ni22Cr10AlY) was carried out by using 600 W continuous wave Yb:YAG laser. Notably, the obtained melted tracks were investigated from the upper surface plan view and transverse section. The topography, microstructure, phases, hardness, and compositions of the plasma sprayed coatings and laser-remelted tracks were characterized by scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), roughness, and microhardness. By controlling the dependent laser variables  (power density and interaction time), a different effect can be obtained for the plasma sprayed bond coating (NiCrAlY). Typically, the results obtained show that at low specific energies, four different distinct zones were observed. These specific energies were not sufficient to produce a uniform melting. The MCrAlY coatings remelted with high specific energies were characterized by completely uniform melting and cellular/dendritic microstructures. The melted coatings have high roughness reduction (1.2 μm) and low hardness (275 HV0.5) in comparison with plasma-sprayed coatings (10.5 μm) and (315 HV0.5) respectively.

Keywords

Main Subjects


  1. Gupta M, Markocsan N, Li X-H, L. stergren O. Influence of bondcoat spray process on lifetime of suspension plasma-sprayed thermal barrier coatings. J Therm Spray Tech, 2018; 27:84-97. https://doi.org/10. 1007/s11666-017-0672-0.
  2. Ctibor P, Prantnerová M, Plasma spraying and characterization of chromium carbide-nickel chromium cCoatings. Prog Color Colorant Coat. 2016; 9(2): 281-290.
  3. Yamazaki Y, Fukanuma H, Ohno N. Effect of interfacial roughness of bond coat on the residual adhesion strength of a plasma sprayed TBC system after thermal cycle fatigue. J Solid Mechan Mater Eng. 2010; 4(2): 196-207. DOI: 10.1299/jmmp.4.196.
  4. Zhao C, Luo L, Xiao C, Zhao X, Wang X, Guo F, Xiao P. The oxidation performance of plasma-sprayed NiAl bond coat: Effect of Hf addition in bond coat and substrate, Surf Coat Technol. 2018; 352(2): 49-58. https://doi.org/10.1016/j.surfcoat.2018. 08.005
  5. Garcia-Alonso D, Serres N, Demian C, Costil S, Langlade C, Coddet C. Pre-/during-/post-laser processes to enhance the adhesion and mechanical properties of thermal-sprayed coatings with a reduced environmental impact. J Thermal Spray Technol. 2011; 20(3): 719-735. http://dx.doi.org/10.1007/ s11666-011-9629-x
  6. Mei X, Zhang X, Zhang L, Li N, Zhang P, Guo Y, Koval N.N. Enhancing the oxidation resistance of NiCrAlY bond coat by high-current pulsed electron beam irradiation. Coatings 2021; 11: 912. https://doi. org/10.3390/coatings11080912.
  7. Clarke D.R, Oechsner M, Padture N.P. Thermal-barrier coatings for more efficient gas-turbine engines, Mater Res Bulletin. 2012; 37:890-941. http://dx.doi. org/10.1557/mrs.2012.232.
  8. Abbas RA, Ajeel SA, Ali Bash MA, Kadhim MJ. Optimizing coating thickness of electrophoretic deposition overlay on plasma sprayed YSZ coating using taguchi method. 2022; IOP Conf Ser: Earth Environ Sci. 961 012060. doi:10.1088/1755-1315/961/1/012060.
  9. Abbas RA, Ajeel SA, Ali Bash MA, Kadhim MJ. Laser innovation of YSZ electrophoretic deposition overlay on plasma sprayed thermal barrier coating system, Mater Today: Proc. 2022; 57:577-585. https://doi.org/10.1016/j.matpr.2022.01.453
  10. Kadhim M.J. Laser cladding of ceramics and laser sealing of plasma sprayed zirconia based thermal barrier coatings, Ph.D. Thesis, Royal School of Mines, Imperial College, University of London, UK, 1990.
  11. Bacos MP, Landais D.S, Lavigne O, Mévrel R, Poulain M, Rio C, Vidal-sétif MH. 10 Years activities at onera on advanced thermal barrier coatings. J Aerosp Lab. 2011; 3:1-14.
  12. Kadhim MJ. Characterization of laser sealed coatings of yttria partially stabilized zirconia. Optic Laser Eng. 2011;49:785-792. http://dx.doi.org/10.1016/j. optlaseng. 2011.03.008.
  13. Luo L, Shan X, Zou Z, Zhao C, Wang X, Zhang A, Zhao X, Guo F, Xiao P. A high performance NiCoCrAlY bond coat manufactured using laser powder deposition. Corr Sci. 2017; 126:356-365. https://doi.org/10.1016/j.corsci.2017.07.018
  14. Yang L, Wei J, Ma Z, Song P, Ma J, Zhao Y, Huang Z, Zhang M, Yang F, Wang X. The fabrication of micro/nano structures by laser machining. Nanomaterials. 2019; 9: 1789. doi:10.3390/ nano9121789.
  15. Kadhim MJ, Atiyah AA, Ali Bash MA. In-situ laser pelletization of advanced ternary thermal barrier coating system. Mater Res Express. 2019; 6: 035512. http://doi.org/10.1088/2053-1591/aaf65a.
  16. Nan L, Li  W, Zhang K. Modeling for laser- material interaction to predict and control the cross sectional area of coaxial laser cladding with powder. Proceedings of the International Conference on Advanced Design and Manufacture. 2006.
  17. Zhao Y, He W, Du H and Luo P. The effect of laser power on the interface microstructure of a laser remelting nano-SiC modified Fe-based Ni/WC composite coating. Coatings. 2018; 8: 297. doi:10.3390/coatings8090297.
  18. Akca E, Gursel A. A review on superalloys and IN718 nickel-based INCONEL superalloy. Period Eng Natural Sci. 2015; 3:15-27. http://dx.doi.org/10. 21533/pen.v3i1.43.
  19. Jiang K, Liu S, Wang X. Phase stability and thermal conductivity of nanostructured tetragonal yttria-stabilized zirconia thermal barrier coatings deposited by air-plasma spraying. Ceram Intern. 2017; 43:12633-12640. http://dx.doi.org/10.1016%2Fj.ceramint.2017.06.142.
  20. Zoei MS, Sadeghi MH, Salehi M. Effect of grinding parameters on the fracture toughness of WC–10Co–4Cr coating deposited by HVOF. Prog Color Colorant Coat. 2019; 12: 231-239.
  21. Oerlikon metco. An Introduction to Thermal Spray, Issue 6 July 2016.
  22. Muktinutalapati NR. Materials for gas turbines- An overview. Adv Gas Turbine Technol. 2011; 4: 293-315. http://doi.org/10.5772/20730.
  23. Kobylańska–Szkaradek K. Thermal barrier ZrO2-Y2O3 obtained by plasma spraying method and laser melting. J Achiev Mater Manuf Eng. 2006; 17: 77-80.
  24. Wang Y, Li J, Liu H, Weng Y. Study on thermal resistance performance of 8YSZ thermal barrier coatings. Inter J Thermal Sci. 2017; 122:12-25. http://dx.doi.org/10.1016/j.ijthermalsci.2017.08.006.
  25. Lu Z, Myoung S, Jung Y, Balakrishnan G, Lee J, Paik U. Thermal fatigue behavior of air-Plasma sprayed thermal barrier coating with bond coat species in cyclic thermal exposure. Materials. 2013; 6:3387-3403. https://doi.org/10.3390/ma6083387.
  26. Hemker KJ, Mendis BG, Eberl C. Characterizing the microstructure and mechanical behavior of a two-phase NiCoCrAlY bond coat for thermal barrier systems. Mater Sci  Eng A. 2008; 483-484:727-730. http://dx.doi.org/10.1016/j.msea.2006.12.169.
  27. Zhang YP, Zhou ZR, Cheng JM, Ge Y, Ma H. Laser remelting of NiCoCrA1Y clad coating on superalloy. Surf Coat Technol. 1996; 79: 131-134. https://doi.org/10.1016/0257-8972(95)02448-4.
  28. Ali Bash MA, Mezher Resen A, A. Kareem AH, Muhi Abdulsahib Y. Improving the hot corrosion behavior of plasma-sprayed MCrAlY by RF sputtering of TiO2 nanocoating and laser remelting treatment. Prog Color Colorants Coat. 2024; 17(1): 27-38. https://doi.org/10.30509/pccc.2023.167142. 1221.
  29. Raj SV, Ghosn LJ, Robinson C, Humphrey D. High heat flux exposures of coated GRCop-84 substrates. Mater Sci Eng A. 2007; 457: 300-312. http://dx.doi. org/10.1016/j.msea.2006.12.133.
  30. Fiedler T, Fedorova T, Rösler J, Bäker M, Design of a nickel-based bond-coat alloy for thermal barrier coatings on copper substrates. Metals. 2014; 4:503-518. https://doi.org/10.3390/met4040503.
  31. Sidhu BS, Puri D, Prakash S. Characterisations of plasma sprayed and laser remelted NiCrAlY bond coats and Ni3Al coatings on boiler tube steels. Mater Sci Eng A. 2004; 368:149-158. http://dx.doi.org/10.1016/j.msea.2003.10.281.
  32. Kadhim MJ, Rawlings RD, West DRF. Operating regimes for laser surface engineering of ceramics. J Mater Sci. 1992; 27:1927-1936. https://ui.adsabs. harvard.edu/link_gateway/1992JMatS..27.1937J/doi:10.1007/BF01107223.
  33. Utu D, Marginean G, Serban V, Codrean C. Corrosion behavior of laser remelted CoNiCrAlY based composite coatings. Engineering. 2010; 2:322-327. http://dx.doi.org/10.4236/eng.2010.25042.
  34. Ali Bash MA. Optimizing, phase transformation and hot corrosion resistance of laser sealing plasma sprayed ceria stabilized zirconia thermal barrier coatings, Ph.D. Thesis, Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq, 2017.
  35. Majumdar J, Manna I. Laser processing of materials. Sdhana. 2003; 28:495-562. http://dx.doi.org/10. 1007/BF02706446.
  36. Baesloki WA, Weeter L, Krishnamurphy S, Smith P, Materials Research Society. Symposium Proceeding, 1984; 28:375.