Investigating the Corrosion Inhibition Performance of Methyl 3H-2,3,5-triazole-1-formate for Mild Steel in Hydrochloric Acid Solution: Experimental and Theoretical Insights

Document Type : Original Article

Authors

1 Production Engineering and Metallurgy, University of Technology-Iraq, Baghdad, P.O. Box: 10001, Iraq

2 Materials engineering, Department, Diyala University, P.O. Box: 32001, Diyala, Iraq

3 Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), P.O. Box: 43000, UKM Bangi, Selangor, Malaysia

4 Energy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad, P.O. Box: 10001, Iraq

5 Al-Farahidi University, Baghdad, P.O. Box: 10001, Iraq

Abstract

Corrosion presents a formidable challenge to the durability of metallic materials, especially in aggressive environments. This study delves into the corrosion inhibition capabilities of Methyl 3H-2,3,5-triazole-1-formate when applied to mild steel immersed in a 1 M HCl solution. Weight loss techniques meticulously scrutinize the inhibitor's efficacy across concentrations (0.1, 0.2, 0.3, 0.4, 0.5, and 1 mM). Immersion durations (1, 5, 10, 24, and 48 hours), all conducted at a constant temperature of 303 K. Furthermore, we explore the influence of temperature fluctuations (ranging from 303 to 333 K) on varying inhibitor concentrations (0.1-1 mM) through a 5-hour immersion period. To delve deeper into the molecular interactions underpinning the inhibitor's effects, we employ Density Functional Theory (DFT) calculations, harnessing the Gaussian 09 software package. Leveraging the B3LYP method, which fuses exchange and correlation functionals alongside a 6-31G++(d,p) basis set, our investigation yields critical insights. Complementary to this analysis, we determine pivotal molecular descriptors, encompassing electronegativity (χ), hardness (η), softness (σ), and transferred electrons fractional number (ΔN). Our experimental findings underscore the inhibitor's prowess, showcasing an impressive inhibition efficiency of 93.8 % at the optimized concentration of 5 mM and an immersion duration of 5 hours at 303 K. Also, we discern that the adsorption behavior of the inhibitor on the mild steel surface aligns with the Langmuir adsorption isotherm, shedding light on its interaction mechanisms. These comprehensive findings hold profound implications for advancing corrosion protection strategies and optimizing inhibitor applications across diverse industrial settings.

Keywords

Main Subjects


  1. Junaedi S, Kadhum AAH, Al-Amiery A, Mohamad AB, Takriff MS. Synthesis and characterization of novel corrosion inhibitor derived from oleic acid: 2-Amino-5- Oleyl 1,3,4-Thiadiazol (AOT). Int J Electrochem Sci. 2012;7:3543-3554. doi: 10.1016/ S1452-3981(23)13976-9
  2. Aljibori HS, Alwazir AH, Abdulhadi S, Al-Azzawi WK, Kadhum AAH, Shaker LM, Al-Amiery AA, Majdi HSh. The use of a Schiff base derivative to inhibit mild steel corrosion in 1 M HCl solution: a comparison of practical and theoretical findings. Int J Corros Scale Inhib. 2022;11(4):1435-1455. doi: 10.17675/2305-6894-2022-11-4-2
  3. Al-Azzawi WK, Salih SM, Hamood AF, Al-Azzawi RK, Kzar MH, Jawoosh HN, Shaker LM, Al-Amiery A, Kadhum AAH, Isahak WNRW, Takriff MS. Adsorption and theoretical investigations of a Schiff base for corrosion inhibition of mild steel in an acidic environment. Int J Corros Scale Inhib. 2022;11(3): 1063-1082. doi: 10.17675/2305-6894-2022-11-3-10
  4. Jamil DM, Al-Okbi A, Hanon M, Rida KS, Alkaim A, Al-Amiery A, Kadhum A, Kadhum AAH. Carbethoxythiazole corrosion inhibitor: as an experimentally model and DFT theory. J Eng Appl Sci. 2018; 13:3952-3959. doi: 10.36478/jeasci.2018. 3952.3959
  5. Alobaidy A, Kadhum A, Al-Baghdadi S, Al-Amiery A, Kadhum A, Yousif E, Mohamad AB. Eco-friendly corrosion inhibitor: experimental studies on the corrosion inhibition performance of creatinine for mild steel in HCl complemented with quantum chemical calculations. Int J Electrochem Sci. 2015; 10:3961-3972. doi: 10.1016/S1452-3981(23)06594-X
  6. Al-Bghdadi S, Hanoon M, Odah J, Shaker L, Al-Amiery A. Benzylidene as efficient corrosion inhibition of mild steel in acidic solution. Proceedings. 2019;41:27.doi: 10.3390/ecsoc-23-06472
  7. Mahdi BS, Aljibori HSS, Abbass MK, Al-Azzawi WK, Kadhum AH, Hanoon MM, Isahak WNRW, Al-Amiery AA, Majdi HSh. Gravimetric analysis and quantum chemical assessment of 4-aminoantipyrine derivatives as corrosion inhibitors. Int J Corros Scale Inhib. 2022;11(3):1191-1213. doi: 10.17675/2305-6894-2022-11-3-17
  8. Alamiery AA. Study of corrosion behavior of N´-(2-(2-oxomethylpyrrol-1-yl) ethyl) piperidine for mild steel in the acid environment. Biointerface Res Appl Chem. 2022;12:3638-3646. doi: 10.33263/BRIAC123. 36383646
  9. Alamiery AA, Mohamad AB, Kadhum A, Takriff MS. Comparative data on corrosion protection of mild steel in HCl using two new thiazoles. Data Brief. 2022;40:107838. doi: 10.1016/j.dib.2022.107838
  10. Mustafa AM, Sayyid FF, Betti N, Shaker LM, Hanoon MM, Alamiery AA, Kadhum AAH, Takriff MS. Inhibition of mild steel corrosion in HCl environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl)phenyl)-1,3,4-triazole. S Afr J Chem Eng. 2022;39:42-51. doi: 10.1016/j.sajce.2021.11.009
  11. Alamiery AA. Investigations on corrosion inhibitory effect of newly quinoline derivative on mild steel in HCl solution complemented with antibacterial studies. Biointerface Res Appl Chem. 2022; 12:1561-1568. doi: 10.33263/BRIAC122.15611568
  12. Alkadir Aziz IA, Annon IA, Abdulkareem MH, Hanoon MM, Alkaabi MH, Shaker LM, Alamiery AA, Isahak WNRW, Takriff MS. Insights into corrosion inhibition behavior of a 5-mercapto-1, 2, 4-triazole derivative for mild steel in HCl solution: experimental and DFT studies. Lubricants. 2021; 9(9):122. doi: 10.3390/lubricants9120122
  13. Aljibori HS, Alamiery A, Kadhum AAH, Advances in corrosion protection coatings: A comprehensive review. Int J Corros Scale Inhib. 2023;12:1476-1520.doi:10. 17675/2305-6894-2023-12-4-6.
  14. Alamiery AA, Isahak WNRW, Takriff MS. Inhibition of mild steel corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide: Gravimetrical, adsorption and theoretical studies. Lubricants. 2021; 9(9):93. doi: 10.3390/lubricants9090093
  15. Dawood MA, Alasady ZMK, Abdulazeez MS, Ahmed DS, Sulaiman GM, Kadhum AAH, Shaker LM, Alamiery AA. The corrosion inhibition effect of a pyridine derivative for low carbon steel in 1 M HCl medium: Complemented with antibacterial studies. Int J Corros Scale Inhib. 2021; 10:1766-1782. doi: 10.17675/2305-6894-2021-10-4-25
  16. Alamiery AA. Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1- propyl)-1,3,4-oxadiazole on mild steel in 1 M HCl medium: Insight from gravimetric and DFT investigations. Mater Sci Energy Technol. 2021; 4:398-406. doi: 10.1016/ j.mset.2021.09.002
  17. Alamiery AA. Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M HCl and 0.5 M sulfuric Acid: Gravimetrical and theoretical studies. Mater Sci Energy Technol. 2021; 4:263-273. doi: 10.1016/j.mset.2021.07.004
  18. Alamiery AA, Isahak WNRW, Aljibori H, Al-Asadi H, Kadhum A. Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yln-(2,5-dimethyl-pyrrol-1-yl)benzoylamine in 1.0 M HCl solution. Int J Corros Scale Inhib. 2021; 10:700-713. doi: 10.17675/2305-6894-2021-10-2-14
  19. Alamiery A, Mahmoudi E, Allami T. Corrosion inhibition of low-carbon steel in HCl environment using a Schiff base derived from pyrrole: gravimetric and computational studies. Int J Corros Scale Inhib. 2021; 10:749–765. doi: 10.17675/2305-6894-2021-10-2-17
  20. Eltmimi AJM, Alamiery A, Allami AJ, Yusop RM, Kadhum AH, Allami T. Inhibitive effects of a novel efficient Schiff base on mild steel in HCl environment. Int. J. Corros. Scale Inhib. 2021; 10:634-648. doi: 10.17675/2305- 6894-2021-10-2-10
  21. Alamiery A, Shaker LM, Allami T, Kadhum AH, Takriff MS. A study of acidic corrosion behavior of furan-derived schiff base for mild steel in HCl environment: Experimental, and surface investigation. Mater Today: Proc. 2021; 44:2337–2341. doi: 10. 1016/j.matpr.2020.12.431
  22. Al-Baghdadi S, Al-Amiery A, Gaaz T, Kadhum A. Terephthalohydrazide and isophthalohydrazide as new corrosion inhibitors for mild steel in HCl: Experimental and theoretical approaches. Koroze Ochr Mater 2021;65:12-22 . doi: 10.2478/kom-2021-0002
  23. Hanoon MM, Resen AM, Shaker LM, Kadhum A, 
    Al-Amiery A. Corrosion investigation of mild steel in aqueous HCl environment using n- (Naphthalen-1yl)-
    1-(4-pyridinyl)methanimine complemented with antibacterial studies. Biointerface Res Appl Chem. 2021;11:9735-9743.doi:10.33263/BRIAC112.97359743.
  24. Al-Baghdadi S, Gaaz TS, Al-Adili A, Al-Amiery A, Takriff M. Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation. Int J Low-Carbon Technol. 2021; 16:181-188. doi: 10.1093/ ijlct/ctaa050
  25. Al-Amiery A. Anti-corrosion performance of 2-isonicotinoyl-n-phenylhydrazinecarbothioamide for mild steel HCl solution: Insights from experimental measurements and quantum chemical calculations. Surf Rev Lett. 2021; 28:2050058. doi: 10.1142/ S0218625X20500584
  26. Abdulazeez MS, Abdullahe ZS, Dawood MA, Handel ZK, Mahmood RI, Osamah S, et al. Corrosion inhibition of low carbon steel in HCl medium using a thiadiazole derivative: weight loss, DFT studies and antibacterial studies. Int J Corros Scale Inhib. 2021; 10:1812–1828. doi: 10.17675/2305-6894-2021-10-4-27
  27. Mustafa A, Sayyid F, Betti N, Hanoon M, Al-Amiery A, Kadhum A, et al. Inhibition evaluation of 5-(4-(1H-pyrrol-1-yl)phenyl)-2-mercapto-1,3,4-oxadiazole for the corrosion of mild steel in an acid environment: thermodynamic and DFT aspects. Tribologia. 2021; 38:39-47. doi: 10.30678/fjt.105330
  28. Abdulsahib YM, Eltmimi AJM, Alhabeeb SA, Hanoon MM, Al-Amiery AA, Allami T, et al. Experimental and theoretical investigations on the inhibition efficiency of N-(2,4-dihydroxytoluen-eylidene)-4-methylpyridin-2-amine for the corrosion of mild steel in HCl. Int J Corros Scale Inhib. 2021; 10:885-899. doi: 10. 17675/2305-6894-2021-10-3-3
  29. Khudhair AK, Mustafa AM, Hanoon MM, Al-Amiery A, Shaker LM, Gazz T, et al. Experimental and theoretical investigation on the corrosion inhibitor potential of N-MEH for mild steel in HCl. Prog Color Colorant Coat. 2022; 15:111-122. doi: 10.30509/ PCCC.2021.166815.1111
  30. Zinad DS, Salim RD, Betti N, Shaker LM, Al-Amiery AA. Comparative investigations of the corrosion inhibition efficiency of a 1-phenyl-2-(1-phenyl-ethylidene)hydrazine and its analog against mild steel corrosion in HCl solution. Prog Color Colorant Coat. 2022; 15:53-63. doi: 10.30509/ pccc.2021. 166786. 1108
  31. Aljibori HS, Abdulzahra OH, Al Adily AJ,  Al-Azzawi WK, Al-Amiery AA and Kadhum AAH, Recent progresses in thiadiazole derivatives as corrosion inhibitors in hydrochloric acid solution, Int J Corros Scale Inhib. 2023; 12(3):842-866. doi: 10.17675/2305-6894-2023-12-3-3
  32. Rouin G, Abdelmouleh M, Mallah A, Masmoudi M. Oil extracted from spent coffee grounds as a green corrosion inhibitor for copper in a 3 wt. % NaCl solution. Coatings. 2023; 13(10):1745. https://doi.org/ 10.3390/coatings13101745.
  33. Al-Sharabi HAA, Bouiti K, Bouhlal F, Labjar N. Anti-corrosive properties of Catha Edulis leaves extract on C38 steel in 1 M HCl media. Experimental and theoretical study. Inter J Corr Scale Inh. 2022; 11(3):956-984. doi:10.17675/2305-6894-2022-11-3-4
  34. Bouhlal F, Mazkour A, Labjar H, Benmessaoud M, Serghini-Idrissi M, El Mahia M, Lotfi El M. El Hajjaji S, Labjar N. Combination effect of hydro-alcoholic extract of spent coffee grounds (HECG) and  potassium Iodide (KI) on the C38 steel corrosion inhibition in 1 M HCl medium: Experimental design by response surface methodology. Chem Data Collect. 2020; 29: 100499. doi: 10.1016/j.cdc.2020.100499 
  35. Dehghani A, Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M. Potential  of borage flower aqueous extract as an environmentally sustainable corrosion inhibitor for acid corrosion of mild steel: Electrochemical and theoretical studies. J Mol Liq. 2019; 277: 895-911. doi: 10.1016/j.molliq. 2019.01.008 
  36. Kang J, Wen J, Jayaram SH, Yu A, Wang X, Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes, Electrohim Acta. 2014; 115: 587-598. doi: 10.1016/j.electacta.2013.11.002
  37. Muñoz AI, Antón J, Guiñón JL and Herranz VP, Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques. Corros Sci. 2007; 49:3200-3225. doi: 10.1016/j.corsci. 2007.03.002 
  38. Yea Y, Yang D, Chen H, Guo S, Yang Q, Chen L, Zhao H and Wangb L, A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment. J Hazard Mater. 2020;381:121019. doi:10.1016/j.jhazmat. 2019. 121019 
  39. Salim RD, Betti N, Hanoon M, Al-Amiery AA. 2-(2,4-Dimethoxybenzylidene)-N-phenylhydrazinecarbothio-amide as an efficient corrosion inhibitor for mild steel in acidic environment. Prog Color Colorant Coat. 2021; 15:45-52. doi: 10.30509/pccc.2021.166775.1105
  40. ASTM International. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test. ASTM International, 2011.
  41. NACE International. Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solutions at Temperatures below 93°C (200°F), TM0193-2016-SG, 2000.
  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 03, Revision B. 05, Gaussian, Inc., Wallingford, CT, 2004.
  43. Koopmans T. Ordering of wave functions and eigen-energies to the individual electrons of an atom. Physica. 1934; 1:104-113. 
  44. Al-Amiery AA, Shaker LM, Kadhum AH, Takriff MS. Exploration of furan derivative for application as corrosion inhibitor for mild steel in HCl solution: Effect of immersion time and temperature on efficiency. Mater Today: Proc. 2021; 42:2968-2973. doi: 10.1016/j.matpr.2020.12.807
  45. Resen AM, Hanoon MM, Shaker LM, Kadhum A, Al-Amiery A. Exploration of 8-piperazine-1-ylmethylumbelliferone for application as a corrosion inhibitor for mild steel in HCl solution. Int J Corros Scale Inhib. 2021; 10:368-387. doi: 10.17675/2305-6894-2021-10-1-21
  46. Hanoon MM, Resen AM, Al-Amiery A, Kadhum AH, Takriff MS. Theoretical and experimental studies on the corrosion inhibition potentials of 2-((6-methyl-2-ketoquinolin-3-yl)methylene)hydrazinecarbothioamide for mild steel in 1 M HCl. Prog Color Colorant Coat. 2021; 15(1):11-23. doi:10.30509/PCCC.2020. 166739. 1095
  47. Hashim FG, Salman TA, Al-Baghdadi SB, Gaaz T, Al-Amiery AA. Inhibition effect of hydrazine-derived coumarin on a mild steel surface in HCl. Tribologia. 2020; 37:45-53. doi: 10.30678/fjt.95510
  48. Resen AM, Hanoon MM, Salim RD, Al-Amiery AA, Shaker LM, Kadhum AA. Gravimetrical, theoretical, and surface morphological investigations of corrosion inhibition effect of 4-(benzoimidazole-2-yl)pyridine on mild steel in HCl. Koroze Ochr Mater. 2020; 64:122-130. doi: 10.2478/kom-2020- 0018
  49. Salman AZ, Jawad QA, Ridah KS, Shaker LM, Al-Amiery AA. Selected BIS thiadiazole: synthesis and corrosion inhibition studies on mild steel in HCl environment. Surf Rev Lett. 2020; 27:2050014. doi: 10.1142/S0218625X20500146
  50. Junaedi S, Al-Amiery A, Kadihum A, Kadhum A, Mohamad A. Inhibition effects of a synthesized novel 4-aminoantipyrine derivative on the corrosion of mild steel in HCl solution together with quantum chemical studies. Int J Mol Sci 2013; 14:11915-11928. doi: 10.3390/ijms140611915
  51. Annon IA, Abbas AS, Al-Azzawi WK, Hanoon MM, Alamiery AA, Isahak WNRW and Kadhum AAH, Corrosion inhibition of mild steel in hydrochloric acid environment using thiadiazole derivative: Weight loss, thermodynamics, adsorption and computational investigations, S. Afr J Chem Eng. 2022; 41: 244-252. doi: 10.1016/j.sajce.2022.06.011
  52. Al-Baghdadi S, Hashim F, Salam A, Abed T, Gaaz T, Al-Amiery A, et al. Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies. Results Phys. 2018; 8:1178-1184. doi: 10.1016/j.rinp.2018.02.007
  53. Al-Azzawi WK, Al Adily AJ, Sayyid FF, Al-Azzawi RK, Kzar MH, Jawoosh HN, et al. Evaluation of corrosion inhibition characteristics of an N-propionanilide derivative for mild steel in 1 M HCl: gravimetrical and computational studies. Int J Corros Scale Inhib. 2022; 11:1100-1114. doi: 10.17675/2305-6894-2022-11-3-12
  54. Al-Amiery AA, Isahak WNRW, Al-Azzawi WK. Corrosion inhibitors: natural and synthetic organic inhibitors. Lubricants. 2023; 11:174. doi:10.3390/ lubricants11040174
  55. Betti N, Al-Amiery AA, Al-Azzawi WK, Isahak WNRW. Corrosion inhibition properties of Schiff base derivative against mild steel in HCl environment complemented with DFT investigations. Scientific Reports. 2023; 13:8979. doi: 10.1038/s41598-023-36064-w
  56. Al-Amiery A, Isahak WNRW, Al-Azzawi WK. ODHI: A promising isatin-based corrosion inhibitor for mild steel in HCl. J Mol Struct. 2023; 1288: 135829.https://doi.org/10.1016/j.molstruc.2023.135829.
  57. Al-Amiery AA, Betti N, Isahak WNRW, Al-Azzawi WK, Wan Nik WMN. Exploring the effectiveness of isatin–schiff base as an environmentally friendly corrosion inhibitor for mild steel in HCl. Lubricants. 2023; 11:211. doi:10.3390/lubricants11050211
  58. Al-Edan AK, Isahak WNRW, Che Ramli ZA, Al-Azzawi WK, Kadhum AAH, Jabbar HS, et al. Palmitic acid-based amide as a corrosion inhibitor for mild steel in 1M HCl. Heliyon. 2023; 9:e08625. doi: 10.1016/j.heliyon.2023.e14657
  59. Naseef Jasim A, Abdulhussein BA, Mohammed Noori Ahmed S, Al-Azzawi WK, Hanoon MM, Abbass MK, Al-Amiery AA. Schiff's base performance in preventing corrosion on mild steel in acidic conditions. Prog Color Colorants Coat. 2023; 16(4):319-29. doi: 10.30509/pccc.2023.167081.1197
  60. Mohammed A, Rubaye AY, Al-Azzawi WK, Alamiery A. Investigation of the corrosion inhibition properties of 4-cyclohexyl-3-thiosemicarbazide on mild steel in 1 M HCl solution. Prog Color Colorants Coat. 2023;16(4):347-59. doi: 10.30509/ PCCC. 2023. 167126.1212
  61. Hussein SS, Al-Hasani IDD, Abed AM, Hanoon MM, Shaker LM, Al-Amiery A, et al. Antibacterial corrosion inhibitor for the protection of mild steel in 1 M HCl solution. Prog Color Colorant Coat. 2023; 16:59-70. doi: 10.30509/pccc.2022.166935.1149
  62. Raheef KM, Qasim HS, Radhi AA, Al-Azzawi WK, Hanoon MM, Al-Amiery AA. Gravimetric and density functional theory investigations on 4-aminoantipyrin schiff base as an inhibitor for mild steel in HCl solution. Prog Color Colorant Coat. 2023; 16:255-269. doi: 10.30509/PCCC.2023.167077.1196
  63. Alamiery A. Case study in a conceptual DFT investigation of new corrosion inhibitor. Lett Appl Nano BioSci. 2021; 11:4007-4015. doi: 10.33263/ LIANBS114.40074015  
  64. Alamiery A. Effect of temperature on the corrosion inhibition of 4-ethyl-1-(4-oxo-4-phenylbutanoyl) thiosemicarbazide on mild steel in HCl solution. Lett Appl Nano BioSci. 2022; 11:3502-3508. doi:10. 33263/LIANBS112.35023508
  65. Betti N, Al-Azzawi WK, Alamiery A. Synthesis and study of corrosion behavior of terephthalaldehyde-derived schiff base for low-carbon steel in HCl: experimental, morphological and theoretical investigation. KOM–Corr Mater Prot J. 2022; 66:103-112.
  66. Carranza MS, Reyes YI, Gonzales EC, Arcon DP, Franco FC. Electrochemical and quantum mechanical investigation of various small molecule organic compounds as corrosion inhibitors in mild steel. Heliyon. 2021; 7(9):e07952. https://doi.org/ 10.1016/ j.heliyon.2021.e07952.
  67. Khadom AA, Mahmmod AA. Quantum chemical and mathematical statistical calculations of phenyltetrazole derivatives as corrosion inhibitors for mild steel in acidic solution: a theoretical approach. Res Eng. 2022; 16:100741.https://doi.org/10.1016/j.rineng.2022.100741.
  68. Malinowski S, Wróbel M, Woszuk A. Quantum chemical analysis of the corrosion inhibition potential by aliphatic amines. Materials. 2021; 14(20):6197.
  69. Boulechfar C, Ferkous H, Delimi A, Berredjem M, Kahlouche A, Madaci A, Djellali S, Boufas S, Djedouani A, Errachid A, Khan AA. Corrosion inhibition of Schiff base and their metal complexes with [Mn (II), Co (II) and Zn (II)]: Experimental and quantum chemical studies. J Mol Liq. 2023; 378:121637.
  70. Punitha N, Sundaram RG, Vengatesh G, Rengasamy R, Elangovan J. Bis-1, 2, 3-triazole derivative as an efficient corrosion inhibitor for mild steel in hydrochloric acid environment: Insights from experimental and computational analysis. Inorg Chem Commun. 2023; 153:110732.
  71. Betti N and Al-Amiery A, Corrosion inhibition screening of 2-((6-aminopyridin-2-yl)imino)indolin-3-one: weight loss, morphology, and DFT investigations. Corros Sci Tech. 2023; 22(1): 10-20. doi: 10.14773/CST.2023.22.1.10.
  72. Mahdi BS, Abbass MK, Mohsin MK, Al-Azzawi WK, Hanoon MM, AlKaabi MHH, Shaker LM, Al-Amiery AA, Isahak WNRW, Kadhum AAH, Takriff MS. Corrosion inhibition of mild steel in hydrochloric acid environment using terephthaldehyde based on Schiff base: Gravimetric, thermodynamic, and computational studies. Molecules. 2022; 27(15):4857. doi: 10.3390/molecules27154857 142. 
  73. Jawad QA, Zinad DS, Salim RD, Al-Amiery AA, Gaaz TS, Takriff MS, Kadhum AAH. Synthesis, characterization, and corrosion inhibition potential of novel thiosemicarbazone on mild steel in sulfuric acid environment. Coatings. 2019; 9(11):729. doi: 10.3390/coatings9110729.
  74. Abbas AS, Mahdi BS, Abbas HH, Sayyid FF, Mustafa AM, Annon IA, Abdulsahib YM, Resen AM, Hanoon MM, Obaeed NH. Corrosion behavior optimization by nanocoating layer for low carbon steel in acid and salt media. Corros Sci Tech. 2023; 22(1):1-9. doi:10.14773/cst.2023.22.1.1
  75. Sayyid FF, Mustafa AM, Hanoon MM, Saker LM, Alamiery AA. Corrosion protection effectiveness and adsorption performance of schiff base-quinazoline on mild steel in HCl environment. Corros Sci Technol. 2022; 21(4): 77-88. doi: 10.14773/CST.2022.21.2.77
  76. Al-Amiery A, Shaker LM, Kadhum AAH and Takriff MS. Synthesis, characterization and gravimetric studies of novel triazole-based compound. Int J Low Carbon Technol. 2020;15(2):164-170. doi: 10.1093/ijlct/ctz067.
  77. Mustafa AM, Abdullahe ZS, Sayyid FF, Hanoon MM, Al-Amiery AA, Isahak WN. 3-Nitrobenzaldehyde-4-phenylthiosemicarbazone as active corrosion inhibitor for mild steel in a hydrochloric acid environment. Prog Color Colorant Coat. 2022; 15(4):285-93. doi: 10.30509/PCCC. 2021.166869.1127
  78. Abbass MK, Raheef KM, Aziz IA, Hanoon MM, Mustafa AM, Al-Azzawi WK, Al-Amiery AA, Kadhum AAH, Evaluation of 2-Dimethylamino-propionamidoantipyrine as a corrosion inhibitor for mild steel in HCl solution: A combined experimental and theoretical study. Prog Color Colorant Coat. 2024; 17: 1-10. doi: 10.30509/pccc.2023.167081.1197
  79. Shanmugapriya R, Ravi M, Ravi S, Ramasamy M, Maruthapillai A. Electrochemical and morphological investigations of elettaria cardamomum pod extract as a green corrosion inhibitor for Mild steel corrosion in 1 N HCl. Inorg Chem Commun. 2023; 154:110958. doi: 10.1016/j.inoche.2023.110958
  80. Al-Amiery AA, Al-Azzawi WK. Organic synthesized inhibitors for corrosion protection of carbon steel: A comprehensive review. J Bio Tribo Corros. 2023; 9(4):74. doi: 10.1007/s40735-023-00791-4