Fe(III) Detection by Multicolor Carbon Dots as Fluorometric Probes

Document Type : Original Article


1 Department of Life Sciences and Biotechnology, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran

2 Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box: 1668836471, Tehran, Iran


Taking an industrial standpoint, the recognition of Fe(III) as a heavy metal ion can exert a profound impact on the industry. In this research, we synthesized carbon dots from a novel and local green source by hydrothermal method. Afterwards, characterization tests, like dynamic light scattering, zeta potential sizer, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, elemental analysis, and transmission electron microscopy have been done. After investigation of physicochemical properties, the proposed novel nanobiosensor based on multicolor carbon dots can detect Fe(III) with ultra-low detection limit compared with other studies. The designed nanobiosensor does not identify other ions, confirming its detection specificity. Besides, this nanobiosensor can detect Fe(III) ion in two different conditions, tap water and cysteine solution as real samples. This accurate and sensitive detection of Fe(III) in different conditions can play an impressive role in industries in the near future.


Main Subjects

  1. Alvandi N, Rajabnejad M, Taghvaei Z, Esfandiari N. New generation of viral nanoparticles for targeted drug delivery in cancer therapy. J Drug Target. 2022; 30(2): 151-165.https://doi.org/10.1080/1061186X.2021.1949600.
  2. Taherian A, Esfandiari N, Rouhani S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnol. 2021;12(1): 1-20.https://doi.org/10.1186/s12645-021-00086-8.
  3. Wan X, Li S, Zhuang L, Tang J. l-Tryptophan-capped carbon quantum dots for the sensitive and selective fluorescence detection of mercury ion in aqueous solution. J Nanoparticle Res. 2016; 18(1): 1-9. https://doi.org/10.1007/s11051-016-3441-y.
  4. Pajewska-Szmyt M, Buszewski B, GadzaƂa-Kopciuch R. Sulphur and nitrogen doped carbon dots synthesis by microwave assisted method as quantitative analytical nano-tool for mercury ion sensing. Mater Chem Phys. 2020; 242(15): 122484.https://doi.org/10.1016/j.matchemphys.2019.122484.
  5.                 Zhang S, Jin L, Liu J, Wang Q, Jiao L. A label-free yellow-emissive carbon dot-based nanosensor for sensitive and selective ratiometric detection of chromium (VI) in environmental water samples. Mater Chem Phys. 2020; 248(1): 122912.https://doi.org/10.1016/j.matchemphys.2020.122912.
  6. Wang C, Wang Y, Shi H, Yan Y, Liu E, Hu X, Fan J. A strong blue fluorescent nanoprobe for highly sensitive and selective detection of mercury(II)based on sulfur doped carbon quantum dots. Mater Chem Phys. 2019; 232(15): 145-151.https://doi.org/10.1016/j.matchemphys.2019.04.071.
  7. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB. A review on detection of heavy metal ions in water - An electrochemical approach. Sensors Actuators B Chem. 2015; 213(5): 515-533.https://doi.org/10.1016/j.snb.2015.02.122.
  8. Liu Y, Liu Y, Park SJ, Zhang Y, Kim T, Chae S, Park M, Kim HY. One-step synthesis of robust nitrogen-doped carbon dots: Acid-evoked fluorescence enhancement and their application in Fe3+ detection. J Mater Chem A. 2015; 3(10): 17747-17754. https://doi.org/10.1039/C5TA05189D.
  9.                 Fatahi Z, Esfandiari N, Ranjbar Z. A new anti-counterfeiting feature relying on invisible non-toxic fluorescent carbon dots. J Anal Test. 2020; 4(1): 307-315. https://doi.org/10.1007/s41664-020-00149-6.
  10. Esfandiari N, Arzanani M, Biology MST. A new application of plant virus nanoparticles as drug delivery in breast cancer, Tumor Biol. 2016; 37(1): 1229-36. https://doi.org/10.1007/s13277-015-3867-3.
  11. Esfandiari N, Taherian A. Nanomedicine, A New Therapeutic Strategy in Breast Cancer treatment, Arch Breast Cancer. 2019; 6(2): 69-82.https://doi.org/10.32768/abc.201962567-78.
  12. Rommasi F, Esfandiari N. Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021; 16 (1): 95-104. https://doi.org/10.1186/s11671-021-03553-8.
  13. Esfandiari N, Arzanani MK, Koohi-Habibi M. The study of toxicity and pathogenicity risk of Potato virus X/herceptin nanoparticles as agents for cancer therapy. Cancer Nanotechnol. 2018; 9(1): 1-13.https://doi.org/10.1186/s12645-018-0036-6.
  14. Esfandiari N, Sefidbakht Y. An isolate of Potato Virus X capsid protein from N. benthamiana: Insights from homology modeling and molecular dynamics simulation. Int J Biol Macromol. 2018; 116(3): 939-946. https://doi.org/10.1016/j.ijbiomac.2018.05.042.
  15. Esfandiari N, Kohi-Habibi M, Hohn T, Pooggin MM. Complete genome sequence of an Iranian isolate of potato virus X from the legume plant pisum sativum, Virus Genes. 2009; 39(1): 141-145. https://doi.org/10.1007/s11262-009-0371-0.
  16. Esfandiari N. Targeting breast cancer with bio-inspired virus nanoparticles. Arch Breast Cancer. 2018; 5(2): 90-95. https://doi.org/10.19187/abc. 20185290-95.
  17. Dong W, Hu X, Chen Z, Duan D, Wu Q. An innovative bio-tissue network signal amplifier activated by high-N-doped carbon for uric acid detection. Mater Chem Phys. 2020; 254(1): 123295. https://doi.org/10.1016/j.matchemphys.2020.123295.
  18. Wu Y, Wu Y, Lv X, Lei W, Ding Y, Chen C, Lv J, Feng S, Chen SM, Hao Q. A sensitive sensing platform for acetaminophen based on palladium and multi-walled carbon nanotube composites and electrochemical detection mechanism. Mater Chem Phys., 2020; 239(1): 121977.https://doi.org/10.1016/j.matchemphys.2019.121977.
  19. Yin Y, Zhang Y, Gao T, Yao T, Han J, Han Z, Zhang Z, Wu Q, Song B. One-pot evaporation–condensation strategy for green synthesis of carbon nitride quantum dots: An efficient fluorescent probe for ion detection and bioimaging. Mater Chem Phys. 2017; 194(1): 293-301.https://doi.org/10.1016/j.matchemphys.2017.03.054.
  20. Tafreshi FA, Fatahi Z, Ghasemi SF, Taherian A, Esfandiari N. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLOS One. 2020; 15(1): 1-17. https://doi.org/10.1371/journal.pone.0230646.
  21. Lv P, Yao Y, Zhou H, Zhang J, Pang Z, Ao K, Cai Y, Wei Q. Synthesis of novel nitrogen-doped carbon dots for highly selective detection of iron ion. Nanotechnol. 2017; 28(16): 165502. https://doi.org/10.1088/1361-6528/aa6320.
  22. Wang M, Li M, Lu J, Fan B, He Y, Wang F. Advances pesticides using a carbon dot-Au (III) complex. RCS. 2018; 4(6): 11551-11556.
  23. Esfandiari N, Bagheri Z, Ehtesabi H, Fatahi Z, Tavana H, Latifi H. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon. 2019; 5(12): e02940. https://doi.org/10.1016/j.heliyon.2019.e02940.
  24. Rahal M, Atassi Y, Ali NN, Alghoraibi I. Novel microwave absorbers based on polypyrrole and carbon quantum dots. Mater Chem Phys. 2020; 255(15): 123491.https://doi.org/10.1016/j.matchemphys.2020.123491.
  25. Sheng Qian Z, Yue Shan X, Jing Chai L, Rong Chen J, Feng H. Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: Functional carbon materials for respective and simultaneous detection 
    of DNA and thrombin, Nanotechnol. 2014; 25(41): 415501. https://doi.org/10.1088/0957-4484/25/41/ 415501.
  26. Rashidi E, Esfandiari N, Ranjbar Z, Alvandi N. Designing of a pH-activatable carbon dots as a luminescent nanoprobe for recognizing folate receptor-positive cancer cells. Nanotechnol. 2022; 33(7): 44-56. https://doi.org/10.1088/1361-6528/ ac385b.
  27. Alvandi N, Asgari Z, Bazargannia P, Boushehri YS, ESfandiari N. Treatment and diagnosis roles of nanoparticles against SARS-Cov-2, J Nanostruct., 2022; 12(4): 807-825. https://doi.org/10.22052/JNS. 2022.04.004.
  28. Alvandi N, Assariha S, Esfandiari N. Off–on sensor based on concentration-dependent multicolor fluorescent carbon dots for detecting pesticides. Nano Struct Nano Object. 2021; 26(1): 100706. https://doi.org/10.1016/j.nanoso.2021.100706.
  29. Wang G., Pan X, Gu L, Ren W, Cheng W. Fluorescent carbon dot (C-dot) nanoclusters. Nanotechnol. 2014; 25(37): 375601. https://doi.org/ 10.1088/0957-4484/25/37/375601.
  30. Qin J, Zhang L, Yang R. Solid pyrolysis synthesis of excitation-independent emission carbon dots and its application to isoniazid detection. J Nanoparticle Res. 2019; 21(1): 59-63. https://doi.org/10.1007/s11051-019-4503-8.
  31. Yang X, Cui F, Ren R, Sun J, Ji J, Pi F, Zhang Y, Sun X. Red-emissive carbon dots for “switch-on” dual function sensing platform rapid detection of ferric ions and l-cysteine in living cells. ACS Omega. 2019; 4(7): 12575-12583.https://doi.org/10.1021/acsomega. 9b01019.
  32. Ding H, Wei JS, Zhong N, Gao QY, Xiong HM. Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging. Langmuir. 2017; 33(44): 12635-12642.https://doi.org/10.1021/acs.langmuir. 7b02385.
  33. Li M, Yao W, Liu J, Tian Q, Liu L, Ding J, Xue Q, Lu Q. Wu W. Facile synthesis and screen printing of dual-mode luminescent NaYF4:Er,Yb (Tm)/carbon dots for anti-counterfeiting applications. J Mater Chem C. 2017; 5(1), 6512-6520. https://doi.org/ 10.1039/C7TC01585B.
  34. Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010; 22(6): 734-738. https://doi.org/10.1002/adma.200902825
  35. Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng C. 2013; 33(5): 2914-2917. https://doi.org/10.1016/j.msec.2013.03. 018.
  36. Fatahi Z, Esfandiari N, Ehtesabi H, Bagheri Z, Ranjbar Z, Latifi H. Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging. EXCLI J. 2019; 13: 454-466. https://doi.org/10.17179/excli2019-1465.
  37. Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B. 2017; 5: 8904-8924. https://doi.org/10.1039/C7TB02484C.
  38. Zheng X, Ren S, Wang L, Gai Q, Dong Q, Liu W. Controllable functionalization of carbon dots as fluorescent sensors for independent Cr(VI), Fe(III) and Cu(II) ions detection. J Photochem Photobiol A Chem. 2021; 417(1): 113359.https://doi.org/10.1016/j.jphotochem.2021.113359.
  39. Khan WU, Wang D, Wang Y. Highly green emissive nitrogen-doped carbon dots with excellent thermal stability for bioimaging and solid-state LED. Inorg Chem. 2018; 57(24): 15229-15239.https://doi.org/10.1021/acs.inorgchem.8b02524.
  40. Kumar N, Bogireddy R, Lara J, Rodriguez L, Agarwal V. One-step hydrothermal preparation of highly stable N doped oxidized carbon dots for toxic organic pollutants sensing and bioimaging. Chem Eng J. 2020; 401(1),126097. https://doi.org/10.1016/ j.cej. 2020.126097.
  41. Sun Y, Zheng S, Liu L, Kong Y, Zhang A, Xu K, Han C. The cost-effective preparation of green fluorescent carbon dots for bioimaging and enhanced intracellular drug delivery. Nanoscale Res Lett. 2020; 15: 55. https://doi.org/10.1186/s11671-020-3288-0.
  42. Liang C, Hu X, Wang Y, Zhang Y, Fu G, Li C. Study on luminescence mechanism of nitrogen-doped carbon quantum dots with different fluorescence properties and application in Fe3+ detection, J Nanoparticle Res. 2021; 23: 101-119. https://doi.org/10.1007/s11051-021-05208-2.
  43. Zhang J, Wang J, Fu J, Fu X, Gan W, Hao H. Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection. J Nanoparticle Res. 2018; 20: 41-48. https://doi.org/10.1007/s11051-018-4141-6.
  44. Shan F, Xia H, Xie X, Fu L, Yang H, Zhou Q, Zhang Y, Wang Z, Yu X. Novel N-doped carbon dots prepared via citric acid and benzoylurea by green synthesis for high selectivity Fe(III) sensing and imaging in living cells. Microchem J. 2021; 167: 106273.https://doi.org/10.1016/j.microc.2021.106273.
  45. Kaneko E, Tanno H, Yotsuyanagi T. Ion-pair adsorption film colorimetry of iron (III) in water samples and human serum. Mikrochim Acta. 1991; 103: 37-44. https://doi.org/10.1007/BF01245050.
  46. Zhu W, Zhang J, Jiang Z, Wang W, Liu X. High-quality carbon dots: Synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+. RSC Adv. 2014; 4: 17387-17392. https://doi.org/10.1039/C3RA47593J
  47. Hamishehkar H, Ghasemzadeh B, Naseri A, Salehi R, Rasoulzadeh F. Carbon dots preparation as a fluorescent sensing platform for highly efficient detection of Fe(III) ions in biological systems. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015; 150: 934-939. https://doi.org/10.1016/ j.saa.2015.06.061.
  48. Cai H, Xu H, Chu H, Li J, Zhang D. Fabrication of multi-functional carbon dots based on “one stone, three birds” strategy and their applications for the dual-mode Fe3+detection, effective promotion on cell proliferation and treatment on ferric toxicosis: In vitro. J Mater Chem B., 2021; 9: 767-782. https://doi. org/10.1039/D0TB02325F.
  49. Krishnaiah P, Atchudan R, Perumal S, Salama ES, Lee YR, Jeon BH. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere. 2022; 286(2), 131764. https://doi. org/10.1016/j.chemosphere.2021.131764.
  50. Atchudan R, Edison TNJI, Aseer KR, Perumal S, Lee YR. Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink. Colloids Surf B Biointerfaces. 2018; 169(1): 321-328.https://doi.org/10.1016/j.colsurfb.2018.05.032.
  51. Zulfajri M, Gedda G, Chang CJ, Chang YP, Huang GG. Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection 
    of Fe3+ ions in aqueous solution. ACS Omega. 
    2019; 4(13): 15382-15392. https://doi.org/10.1021/ acsomega.9b01333.
  52. Lu M, Duan Y, Song Y, Tan J, Zhou L. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry. J Mol Liq. 2018; 269(1): 766-774. https://doi.org/10.1016/j.molliq.2018.08.101.
  53. Salimian Rizi V. Ce Pte Us Pt, Mater. Res. Express. (2019), 0-12.
  54. He G, Xu M, Shu M, Li X, Yang Z, Zhang L, Su Y, Hu N, Zhang Y. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging. Nanotechnol. 2016; 27(39): 1-10.https:// doi. org/10.1088/0957-4484/27/39/395706.
  55. Shi J, Ni G, Tu J, Jin X, Peng J. Green synthesis of fluorescent carbon dots for sensitive detection of Fe2+ and hydrogen peroxide. J Nanoparticle Res. 2017; 19(1): 209-218. https://doi.org/10.1007/s11051-017-3888-5.
  56. Yang M, Liu M, Wu Z, He Y. Carbon dots co-doped with nitrogen and chlorine for “ off-on ” fluorometric determination of the activity of acetylcholinesterase and for quantification of organophosphate pesticides. Microchim Acta. 2019; 186: 585-593. https://doi.org/ 10.1007/s00604-019-3715-z
  57. Yang L, Zhang X, Wang J, Sun H, Jiang L. Double-decrease of the fluorescence of CdSe/ZnS quantum dots for the detection of zinc (II) dimethyldithiocarbamate (ziram) based on its interaction with gold nanoparticles. Microchimica Acta. 2018; 185(10): 472-486.https://doi.org/10.1007/s00604-018-2995-z.
  58. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim Acta. 2017; 184(11): 1899-1914. https://doi.org/10. 1007/s00604-017-2318-9.
  59. Ahmed GHG, Laíño RB, Calzón JAG, García MED. Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta. 2015; 182(8): 51-59. https://doi.org/10.1007/s00604-014-1302-x.
  60. Zhang HD, Chen AY, Gan B, Jiang H, Gu LJ. Corrosion protection investigations of carbon dots and polydopamine composite coating on magnesium alloy. J Magnes Alloy. 2022; 10(5): 1358-1367. https://doi. org/10.1016/j.jma.2020.11.021.
  61. Zahraee SS, Alvandi N, Ghamari M, Esfandiari N. An ultra-sensitive nano biosensor for 17β-estradiol detecting using carbon dots. Nano Struct Nano Object. 2023; 34: 100951. https://doi.org/10.1016/j.nanoso. 2023.100951.
  62. Assariha S, Alvandi N, Rouhani S, Esfandiari N. Bioinspired multicolor carbon dots: comprehensive cytotoxicity, phytotoxicity, and bioimaging in animal cells and plants. Luminescence, 2023; 38(5): 554-567. https://doi.org/10.1002/bio.4482
  63. Bagheri H, Saber-Tehrani M, Shishehbore MR, Shahvazian M. Janus green dye as a new reagent for catalytic kinetic determination of zirconuim in ceramic materials. Prog Color Colorants Coat. 2010; 3(2): 58-65. https://doi.org/10.30509/pccc.2010. 75773.
  64. Gharagozlou M, Rouhani S. A new reusable mercury-sensitive turn-on nano-chemosensor based on functionalized CoFe2O4@SiO2 magnetic nano-composite. Prog Color Colorants Coat. 2022; 15(2): 75-85. https://doi.org/10.30509/pccc.2021.166735.1091