Synthesis and Characterization of Well-dispersed Zinc Oxide Quantum Dots in Epoxy Resin Using Epoxy Siloxane Surface Modifier

Document Type : Original Article

Authors

1 Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran.

2 Department of Inorganic Pigments and Glaze, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

Abstract

Zinc oxide quantum dots were synthesized using poly (dimethyl siloxane) diglycidyl ether terminated, as surface modifiers (SAs) in different concentrations by precipitation method. The epoxy siloxane modifier was chosen in order to improve the compatibility with the polymeric matrix and gain better dispersion. ZnO QDs with size of about 3 nm with optimum properties were synthesized. Structural characteristics and optical properties of synthesized ZnO quantum dots were investigated using Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), photoluminescence (PL) and UV-Vis spectroscopy. They were powdered, purified and finally dispersed in 3 treatment levels in epoxy resin Matrix and they were distributed uniformly in the epoxy resin. The effect of these nanoparticles on the curing process of epoxy resin and 1,3-bis (aminomethyl) cyclohexane (1,3BAC) hardener was investigated using differential scanning calorimetry (DSC). The nanocomposites containing 0.05, 0.1 and 0.15 % ZnO nanoparticles presented respectively 3.6, 15.05, and 12.76 % lower heat flows than the epoxy resin which confirms the barrier effect of these nanoparticles on the activity of epoxy and amine.

Keywords

Main Subjects


  1. J. J. Huang, Y. Bin Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, M. Q. Zhang, Highly luminescent and transparent ZnO quantum dots–epoxy composite used for white light emitting diodes, Phys. Chem. Chem. Phys., 16(2014), 5480..
  2. T. Jin, D. Sun, J. Y. Su, H. Zhang, H. J. Sue, Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7, J. Food Sci., 74(2009) M46-M52. 
  3. V. Muşat, A. Tăbăcaru, B. Ş. Vasile, V. A. Surdu, Size-dependent photoluminescence of zinc oxide quantum dots through organosilane functionalization, RSC Adv., 4(2014), 63128-63136. 
  4. K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, W. F. Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method, Chem. Phys. Lett., 409(2005), 208-211. 
  5. L. Zhang, L. Yin, C. Wang, N. lun, Y. Qi, D. Xiang, Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent, J. Phys. Chem. C., 114(2010), 9651-9658. 
  6. T. J. Jacobsson, T. Edvinsson, Absorption and fluorescence spectroscopy of growing ZnO quantum dots: size and band gap correlation and evidence of mobile trap states, Inorg. Chem., 50(2011), 9578-9586. 
  7. X. J. Huang, X. F. Zeng, J. X. Wang, J. F. Chen, Transparent dispersions of monodispersed ZnO nanoparticles with ultrahigh content and stability for polymer nanocomposite film with excellent optical properties, Ind. Eng. Chem. Res., 57(2018), 4253-4260. 
  8. A. K. Verma, ZnO quantum dots a novel nanomaterial for various applications: Recent advances and challenges, Indian J. Biochem. Biophys., 59(2022) 1190-1198. 
  9. S. Repp, S. Weber, E. Erdem, Defect evolution of nonstoichiometric ZnO quantum dots, J. Phys. Chem. C. 120(2016), 25124-25130. 
  10. T. Zou, X. Xing, Y. Yang, Z. Wang, Z. Wang, R. Zhao, X. Zhang, Y. Wang, Water-soluble ZnO quantum dots modified by (3-aminopropyl) triethoxysilane: The promising fluorescent probe for the selective detection of Cu2+ ion in drinking water, J. Alloys Compd., 825(2020), 153904. 
  11. L. San José, O. García, I. Quijada-Garrido, M. López-González, RAFT hydroxylated polymers as templates and ligands for the synthesis of fluorescent ZnO quantum dots, Nanomaterials., 12(2022), 3441. 
  12. S. Li, Z. Sun, R. Li, M. Dong, L. Zhang, W. Qi, X. Zhang, H. Wang, ZnO nanocomposites modified by hydrophobic and hydrophilic silanes with dramatically enhanced tunable fluorescence and aqueous ultrastability toward biological imaging applications., Sci. Rep., 5(2015), 8475. 
  13. J. Oliva, L. Diaz-Torres, A. Torres-Castro, P. Salas, L. Perez-Mayen, E. De la Rosa, Effect of TEA on the blue emission of ZnO quantum dots with high quantum yield, Opt. Mater. Express., 5(2015), 1109. 
  14. Y. Q. Li, S. Y. Fu, Y. Yang, Y. W. Mai, Facile synthesis of highly transparent polymer nanocomposites by introduction of core–shell structured nanoparticles, Chem. Mater., 20(2008), 2637-2643.
  15. Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, Y. W. Mai, Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors, Polymer (Guildf)., 51(2010), 2755-2762. 
  16. R. L. B. Cabral, F. M. F. Galvão, K. K. O. de Souto Silva, B. H. S. Felipe, N. F. de Andrade Neto, P. B. de Almeida Fechine, A. Zille, S. Kim, J. H. O. do Nascimento, Surface modification of ZnO quantum dots coated polylactic acid knitted fabric for photocatalytic application, J. Appl. Polym. Sci., 139(2022), 482-496. 
  17. M. A. V. Garrido, M. Pacio, A. Pacio, M. C. Portillo, O. P. Moreno, H. Jaurez, Analysis of blue (BE), green (GE), yellow (YE), and red (RE) emission band in ZnO quantum dots, Optik (Stuttg), 271(2022), 170102. 
  18. A. Schejn, L. Balan, D. Piatkowski, S. MacKowski, J. Lulek, R. Schneider, From visible to white-light emission by siloxane-capped ZnO quantum dots upon interaction with thiols, Opt. Mater. (Amst), 34(2012), 1357-1361. 
  19. C. S. Garoufalis, Z. Zeng, G. Bester, I. Galanakis, D. Hayrapetyan, E. Paspalakis, S. Baskoutas, Excitons in ZnO quantum dots: the role of dielectric confinement, J. Phys. Chem. C., 126(2022), 2833-2838. 
  20. V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, J. Liu, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals, Phys. Rev. B., 73(2006), 1-9. 
  21. D. Haranath, S. Sahai, P. Joshi, Tuning of emission colors in zinc oxide quantum dots, Appl. Phys. Lett., 92(2008), 148-159. 
  22. P. Zhang, W. Liu, ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging, Biomaterials., 31(2010), 3087-3094. 
  23. D. Zhang, Y. H. Liu, L. Zhu, Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes, IScience., 25(2022), 105111. 
  24. M. Yu, W. Yang, Q. Zhang, C. Wong, W. Ding, L. Wang, X. Yang, Holmium acetylacetonate, a compatibilizer between ZnO quantum dots and epoxy resin, Opt. Mater. Express, 6(2016), 1757-1767. 
  25. F. Asadi, A. Jannesari, A. Arabi, Progress in organic coatings epoxy siloxane / ZnO quantum dot nanocomposites : Model-fi tting and model-free approaches to kinetic analysis of non-isothermal curing process, Prog. Org. Coat., 135(2019), 270-280. 
  26. S. Banerjee, P. Bhattacharyya, C. K. Ghosh, Charge carrier–LO phonon interaction in ZnO nanostructures: effect on photocatalytic activity and infrared optical constants, Appl. Phys. A Mater. Sci. Process., 123(2017), 1-9. 
  27. G. Jain, C. Rocks, P. Maguire, D. Mariotti, One-step synthesis of strongly confined, defect-free and hydroxy-terminated ZnO quantum dots, Nanotechnology., 31(2020), 215707.