Performance of Thermophilic Aerobic Membrane Reactor (TAMR) for Carpet Cleaning Wastewater

Document Type : Original Article

Authors

Environment and Water Directorate, Ministry of Science and Technology, P.O. Box: 20392, Baghdad, Iraq

Abstract

Managing sewage has become increasingly important at both the national and international levels, largely due to uncertain future options for recovery and disposal. Due to this, it is necessary to develop innovative technology that can reduce pollutants such as surfactants to mitigate the problem at its source. Surfactants are the kind of pollutants that can pose health and environmental risks. This paper aims to study the efficiency of the removal of methylene blue active substances as an anionic surfactant (MBAS) and chemical oxygen demand (COD) from carpet cleaning wastewater using a thermophilic aerobic membrane reactor (TAMR). A laboratory-scale reactor was monitored daily for a month during this study. The removal efficiencies of MBAS and COD were 92 and 95 %, respectively. This study demonstrated that the TAMR process could resist high-stress situations (sudden load peaks) and withstand high surfactant concentrations, making it the ideal pretreatment option. For MBAS removal, the TAR and UF processes combined led to higher removal yields. MBAS was removed almost completely (>92 %) by the TAMR+UF procedure. Moreover, membrane cleaning operations and fouling problems are discussed.

Keywords

Main Subjects


  1. G. Bertanza, M.C. Collivignarelli, B.M. Crotti, R. Pedrazzani, Integration between chemical oxidation and membrane thermophilic biological process, Water Sci. Technol. 61 (2010), 227-234.
  2. C. Dumas, S. Perez, E. Paul, X. Lefebvre, Combined thermophilic aerobic process and conventional anaerobic digestion: Effect on sludge biodegradation and methane production, Bioresour. Technol., 101 (2010), 2629-2636. 
  3. K. R. Kalash, M. Al-Furaiji, A. N. Ahmed, Kinetic Characteristics and the Performance of Up-Flow Biological Aerated Filters (UBAF) for Iraqi Municipal Wastewater, Pollution., 8 (2022), 621-636. 
  4. C. Ramprasad, L. Philip, Surfactants and personal care products removal in pilot scale horizontal and vertical flow constructed wetlands while treating greywater, Chem. Eng., 284 (2016), 458-468. 
  5. M. Lechuga, M. Fernández-Serrano, E. Jurado, J. Núñez-Olea, F. Ríos, Acute toxicity of anionic and non-ionic surfactants to aquatic organisms, Ecotoxicol. Environ. Saf., 125 (2016), 1-8.
  6. T. Sharma, Impact of anionic surfactant on stability, viscoelastic moduli, and oil recovery of silica nanofluid in saline environment, J. Pet. Sci. Eng., (2020), 107634. 
  7.                 M. Palmer, H. Hatley, The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review, Water Res., 147 (2018), 60-72. 
  8. European Commission, Regulamento no648/2004, Off. J. Eur. Communities., L 269 (2000), 1-15.
  9. K. Jardak, P. Drogui, R. Daghrir, Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes, Environ. Sci. Pollut. Res., 23 (2016), 3195-3216. 
  10. C. O. C. Nascimento, M. T. Veit, S. M. Palácio, G. C. Gonçalves, M. R. Fagundes-Klen, Combined application of coagulation/flocculation/sedimentation and membrane separation for the treatment of laundry wastewater, Int. J. Chem. Eng., 2019 (2019), 1-13. 
  11. S. Bering, J. Mazur, K. Tarnowski, M. Janus, S. Mozia, A.W. Morawski, The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment, Sci. Total Environ., 627 (2018), 1638-1643. 
  12. M. Al-Furaiji, B. Waisi, K. Kalash, M. Kadhom, Effect of polymer substrate on the performance of thin-film composite nanofiltration membranes, Int. J. Polym. Anal. Charact., 27 (2022), 316-325.
  13. N. S. Ali, K. R. Kalash, A. N. Ahmed, T. M. Albayati, Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO2, and UV/H2O2 to control membrane fouling, Sci. Rep., 12(2022), 16782. 
  14. S. Mohsen Alardhi, J. M. Alrubaye, T. M. Albayati, Removal of methyl green dye from simulated waste water using hollow fiber ultrafiltration membrane, IOP Conf. Ser. Mater. Sci. Eng., 928(2020), 20-52. 
  15. S. T. Kadhum, G. Y. Alkindi, T. M. Albayati, Determination of chemical oxygen demand for phenolic compounds from oil refinery wastewater implementing different methods, Desalin. WATER Treat., 231(2021), 44-53. 
  16. H. J. Al-Jaaf, N. S. Ali, S. M. Alardhi, T. M. Albayati, Implementing of eggplant peels as an efficient bio-adsorbent for treatment of oily domestic wastewater, Desalin. WATER Treat., 245(2022), 226-237. 
  17. A. Abeynayaka, C. Visvanathan, Mesophilic and thermophilic aerobic batch biodegradation, utilization of carbon and nitrogen sources in high-strength wastewater, Bioresour. Technol., 102(2011), 2358-2366. 
  18. J. Duncan, A. Bokhary, P. Fatehi, F. Kong, H. Lin, B. Liao, Thermophilic membrane bioreactors: A review, Bioresour. Technol., 243(2017), 1180-1193. 
  19. H. U. Cho, S. K. Park, J. H. Ha, J. M. Park, An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation, J. Environ. Manage., 129(2013), 274-282. 
  20. E. Shakeri, M. Mousazadeh, H. Ahmadpari, I. Kabdasli, H. A. Jamali, N. S. Graça, M. M. Emamjomeh, Electrocoagulation-flotation treatment followed by sedimentation of carpet cleaning wastewater: optimization of key operating parameters via RSM-CCD, Desalin. Water Treat., 227(2021), 163-176. 
  21. M. M. Emamjomeh, H. A. Jamali, Z. Naghdali, M. Mousazadeh, Carwash wastewater treatment by the application of an environmentally friendly hybrid system: an experimental design approach, Desalin. Water Treat., 160 (2019), 171-177. 
  22. W. E. Federation, APHA, AWWA, WEF. Standard Methods for examination of water and wastewater, An. Hidrol. Médica., 5(2012), 185-186. 
  23. S. Chitikela, S. K. Dentel, H. E. Allen, Modified method for the analysis of anionic surfactants as methylene blue active substances, Analyst., 120(1995), 2001-2004. 
  24. M. C. Collivignarelli, A. Abbà, G. Bertanza, G. Barbieri, Treatment of high strength aqueous wastes in a thermophilic aerobic membrane reactor (TAMR): Performance and resilience, Water Sci. Technol., 76(2017), 3236-3245. 
  25. I. Ciabattia, F. Cesaro, L. Faralli, E. Fatarella, F. Tognotti, Demonstration of a treatment system for purification and reuse of laundry wastewater, Desalination., 245(2009), 451-459. 
  26. M. C. Collivignarelli, A. Abbà, G. Bertanza, M. Setti, G. Barbieri, A. Frattarola, Integrating novel (thermophilic aerobic membrane reactor-TAMR) and conventional (conventional activated sludge-CAS) biological processes for the treatment of high strength aqueous wastes, Bioresour. Technol., 255(2018), 213-219. 
  27. M. C. Collivignarelli, M. Carnevale Miino, M. Baldi, S. Manzi, A. Abbà, G. Bertanza, Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system, Process Saf. Environ. Prot., 132(2019), 105-115. 
  28. S. Šostar-Turk, I. Petrinić, M. Simonič, Laundry wastewater treatment using coagulation and membrane filtration, Resour. Conserv. Recycl., 44(2005), 185-196. 
  29. T. M. Lapara, J. E. Alleman, Thermophilic aerobic biological wastewater treatment, Water Res., 33 (1999), 895–908. 
  30. J. M. P. E. O. M. R. Wiesner, Water treatment membrane processes, 9th ed., New York, NY : McGraw-Hill, 1996., 1996.