Over the last two decades, the use of nanoparticles as textile substrates has been the subject of extensive research, aimed at producing finished fabrics with multi-functional performance. The novelty of this article is application of β-cyclodextrin (β-CD) to control the release of zinc oxide nanoparticles (NZnO) on the fabric surface, and therefore it increases the stability and effectiveness time of this substance on the fabric surface. The materials used to treat the silk fabrics were citric acid (CA) as an eco-friendly cross-linking agent and NZnO as a catalyst. In addition, the grafting of β-CD onto the silk fabrics occurred through a pad-dry-cure process. In the other hand, stability of NZnO on the fabric surface investigated by photocatalytic activity before and after of washing. These nanoparticles along with CA were found to be effective in enhancing the crease recovery performance of the silk fabricin wet (233°) and dry states (310°). As the SEM images suggested, the treated fibers had CA, as a cross-linking agent, NZnO deposited on their surface. The results indicated that the as-prepared silk fabric exhibits self-cleaning performance (∆E>10) and excellent antibacterial activity (>99 % for both E. coli and S. areus).
N. Balci, Z. Ömerogulallari, D. Kut, H. A. Eren, Effects of plasma and ozone treatments on tensile and whiteness properties of 100% silk, J. Fac. Ing., 20(2015), 43-56.
G. Li, H. Liu, T. D. Li, J. Wang, Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications, Mater. Sci. Eng. C, 32(2012), 627–636.
Zh. Hadisi, M. Farokhi, H. R. Bakhsheshi-Rad, M. Jahanshahi, S. Hasanpour, E. Pagan, A. Dolatshahi-Pirouz, Y. Sh. Zhang, S. C. Kundu, M. Akbari, Hyaluronic acid (HA)-based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management, Macromol. Biosci., 2020, 1-17.
N. Reddy, K. Warner, Yi. Yang, Low-temperature wet-crosslinking of silk with citric acid, Ind. Eng. Chem., 50(2011), 4458-4463.
J. Huang, Y. Yang, L. Yang, Y. Bu, T. Xia, Sh. Gu, H. Yang, D. Ye, W. Xu, Fabrication of multifunctional silk fabrics via one step in-situ synthesis of ZnO, Mater. Lett., 237(2019), 149-151.
A. M. Nafchi, A.K. Alias, S. Mahmud, M. Robal, Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide, J. Food Eng., 113(2012), 511-519.
A. Amani, M. Montazer, M. Mahmoudirad, Synthesis of applicable hydrogel corn silk/ZnO nanocomposites on polyester fabric with antimicrobial properties and low cytotoxicity, Int. J. Biol. Macromol. , 123(2019), 1079-1090.
A. Nazari, M. Montazer, A. Rashidi, M. Yazdanshenas, M. Anary-Abbasinejad, Nano TiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with poly carboxylic acids under UV and high temperature, Appl. Catal. A-Gen, 371(2009),10-16.
A. Verbiˇc, M. Gorjanc, B. Simoncic, Zinc oxide for functional textile coatings: recent advances, Coatings, 9(2019), 1-26.
S. Kathirvelua, L. D’Souza, B Dhurai, UV protection finishing of textiles using ZnO nanoparticles, Indian. J. Fibre Text. Res., 34(2009), 267-273.
S. M. Gawish, A.M. Ramadan, S.M. Abo El-Ola, A.A. Abou El-Kheir, Citric acid used as a cross-linking agent for grafting β-cyclodextrin onto wool fabric, Polym. Plast. Technol. Eng., 48(2009), 701-710.
A. Salama, Chitosan/silk fibroin/zinc oxide nanocomposite as a sustainable and antimicrobial biomaterial, Cellul. Chem. Technol., 52(2018), 903907.
S. Majumder, U.R. Dahiya, S. Yadav, P. Sharma, D. Ghosh, G.K. Rao, V. Rawat, G. Kumar, A. Kumar, Ch.M. Srivastava, Zinc oxide nanoparticles functionalized on hydrogel grafted silk fibroin fabrics as efficient composite dressing, Biomolecules, 10(2020), 710-723.
M. T. Noman, N. Amor, M. Petru, A. Mahmood, P. Kejzlar, Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres, Polym. J., 13(2021), 1227-1244.
M. Mazarji, Gh. Nabi Bidhendi, N. M. Mahmoodi, Mathematical modelling of an annular photocatalytic reactor for methylene blue degradation under UV light irradiation using rGO-ZnO hybrid, Prog. Color Colorants Coat., 4(2011), 85-94
B. Malaikozhundan, J. Vinodhini, Nanopesticidal effects of pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle, callosobruchus maculatus, Mater. Today Commun., 14(2018), 106-115.
N Durán, P. D. Marcato, GIH De Souza, O. L. Alves, E. Esposito, Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment, J. Biomed. Nanotech, 3(2007), 203-208.
B. Fei, Z. Deng, J. H. Xin, Y. Zhang, G. Pang, Room temperature synthesis of rutile nanorods and their applications on cloth, Nanotechnology, 17(2006), 1927-1931.
J. H. Xin, W. A. Daoud, Y. Y. Kong, A new approach to UV-blocking treatment for cotton fabrics, Text. Res. J., 74(2004), 97-100.
H. J. Lee, S. Y. Yeo, S. H. Jeong, Antibacterial effect of nanosized silver colloidal solution on textile fabrics, J. Mater. Sci., 38(2003), 2199-2204.
A. Yadav, V. Prasad, A. A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, N. Vigneshwaran, Functional finishing in cotton fabrics using zinc oxide nanoparticles, Bull. Mater. Sci., 29(2006), 641-645.
M. Khajeh Aminian, F. Sajadi, M. R. Mohammadizadeh, S. Fatah, Hydrophilic and photocatalytic properties of TiO2/SiO2 nano-layers in dry weather, Prog. Color Colorants Coat,. 14 (2021), 221-232.
S. Rasouli, Sh. Saket, One step rapid synthesis of nano-crystalline ZnO by microwave-assisted solution combustion method, Prog. Color Colorants Coat., 3(2010), 19-25.
H. Sudrajat, Superior photocatalytic activity of polyester fabrics coated with zinc oxide from waste hot dipping zinc, J. Clean. Prod., 172(2018), 1722-1729.
A. Hatamie, A. Khan, M. Golabi, A. P. F. Turner, V. Beni, W. Cheung Mak, A. Sadollahkhani, H. Alnoor, B. Zargar, S. Bano, O. Nur, M. Willander, Zinc oxide nanostructures modified textile and its application to biosensing, photocatalytic and as antibacterial material, Langmuir, (2015), 1-23.
R. Sahaa, S. Karthika, P. M. R. Subbiah, A. Kumar, R. Suriyaprabha, V. Rajendran, Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics, Prog. Org. Coat, 124(2018), 80-91.
M. Rastgoo, M. Montazer, T. Harifia, M. Mahmoudirad, In-situ sonosynthesis of cobblestone-like ZnO nanoparticles on cotton/polyester fabric improving photo, bio and sonocatalytic activities along with low toxicity and enhanced mechanical properties, Mater. Sci. Semicond. Proc., 66(2017), 92-98.
A. Amani, M. Montazer, M. Mahmoudirad, Low starch/corn silk/ZnO as environmentally friendly nanocomposites assembling on PET fabrics, Int. J. Biol. Macromol., 170(2021), 780-792.
H. Poortavasoly, M. Montazer, T. Harifi, Aminolysis of polyethylene terephthalate surface along with in situ synthesis and stabilizing ZnO nanoparticles using triethanolamine optimized with response surface methodology, Mater. Sci. Eng. C., 58(2016), 495-503.
Ch.Wang, J. He, Research on the multifunction fabric loaded with Nano-ZnO and β-cyclodextrin, Adv. Mater. Res., 332-334(2011), 1439-1442.
N. Sarwar, M. Ashraf, M. Mohsin, A. Rehman, A. Younus, A. Javid, K. Iqbal, Sh. Riaz, Multifunctional formaldehyde free finishing of cotton by using metal oxide nanoparticles and ecofriendly cross-linkers, Fiber. Polym., 20(2019), 2326-233.
A. Zare, Citric acid as environment friendly crease-resistance finishing agent for silk fabric combined by β-cyclodextrin, Res. J. Text. Appar., 26(2022), 238-254.
Y. Yang, S. Li, Silk fabric non-formaldehyde crease-resistant finishing using citric acid, J. Text. Inst., 84(1993), 638-644.
A. Nazari, M. Montazer, N. Nasirizadeh, B. Namiranian, Cellulase pretreatment on mercerized cotton to enhance x-linking, self-cleaning, and antibacterial properties Using Nano TiO2/CA/BTCA: statistical approaches, J. Eng. Fibers Fabr., 8(2013), 114-125.
M. A. Shirgholami, A. Nazari, M. Mirjalili, Statistical optimization of self-cleaning technology and color reduction in wool fabric by nano zinc oxide and eco-friendly cross-linker, Clean. Technol. Environ. Policy, 17(2014), 1-15.
A. Zare, P. Payvand, The prediction of optimal conditions for the surface grafting of b -cyclodextrin onto silk fabrics by an artificial neural network (ANN), Pigm. Resin Technol., 52(2023), 183-191.
A. Dixit, K. Wazarkar, A. S.Sabnis, Antimicrobial UV curable wood coatings based on citric acid, Pigm. Resin Technol., 5(2021), 1-10.
B. Martel, M. Weltrowski, D. Ruffin, M. Morcellet, Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: Study of the process parameters, J. Appl. Polym. Sci., 83(2002), 1449-1456.
B. Voncina, M. A. Marechal L, Grafting of cotton with β-cyclodextrin via poly(carboxylic acid), J. Appl. Polym. Sci., 96(2005), 1323-1328.
A. Abou Okeil, Citric acid crosslinking of cellulose uUsing TiO2 catalyst by pad-dry-cure method, Polym. Plast Technol. Eng., 47(2008), 174-179.
M. Nazi, R. M. A. Malek1, M. B. Moghadam, Effect of processing conditions on producing a reactive derivative from b-cyclodextrin with itaconic acid, starch, 64(2012), 794-802.
W. Misiuk, M. Zalewska, Study on the inclusion interactions of β-cyclodextrin and its derivative with clomipramine by spectroscopy and its analytic application., Anal. Lett., 41(2008), 543–560.
T. Loftsson, M. Masson, Cyclodextrins in topical drug formulations: theory and practice, Incl. Phenom. Macrocycl. Chem., 225(2001), 15-30.
H. J. Buschmann, D. Knittel, E. Schollmeyer, New textile applications of cyclodextrins, J. Incl. Phenom. Macrocycle. Chem., 40(2001), 169-172.
J. Szejtli, Utilization of cyclodextrins in industrial products and processes, J. Mater. Chem., 7(1997), 575-587.
F. M. Bezerra, M. J. Lis, H. B. Firmino, The role of β-cyclodextrin in the textile industry-Review, Molecules, 25(2020), 3624-3651.
M. Rehana, S. A. Mahmoudb, H. M. Mashalyb, B. M. Youssef, β-Cyclodextrin assisted simultaneous preparation and dyeing acid dyes onto cotton fabric, React. Funct. Polym., 151(2020), 1-9.
M Shabbir, SH. Ahmed, J. N. Sheikh, In frontiers of textile materials: polymers, nanomaterials, enzymes, and advanced modification techniques, Wiley-Scrivener, New York, 2020, 87-98.
G. Ibrahim, Fragrance finishing of cellulosic fabrics, Int. Des. J., 6(2016), 251-259.
U. R. Bhaskara, A.Tourrette, D. Jocic, M. M. C. G. Warmoeskerken, Attachment of β-cyclodextrins on cotton and influence of β-cyclodextrin on ester formation with BTCA on cotton, AATCC J. Res., 1(2014), 28-38.
M. Nazi , R. M. A. Malek, R. Kotek, Modification of β-cyclodextrin with itaconicacidand application of the newderivative to cotton fabrics, Carbohydr. Polym., 88(2012), 950-958.
S. Salimpour Abkenar, Dyeing properties of natural dyes on silk treated with ß-cyclodextrin, Int. J. Mater. Eng., 15(2021), 37-42.
L. Ammayappan, J. J. Moses, An overview on application of cyclodextrins in textile product enhancement, J. Text. Assoc., 70(2009), 9-16.
M. Khajeh Mehrizi, F. Malekan, M. Veysian, Z. Shahi, The effect of different nanoparticles on dyed wool carpet with walnut shell natural dye, Prog. Color Colorants Coat., 16 (2023), 231-241.
L. Mehraz , M. Nouri, Preparation and characterization of β-cyclodextrin grafted silk fabric, J. Nat. Fibers, 17(2020), 371-381.
S. Periyasamy, M. L. Gulrajani, D. Gupta, Preparation of a multifunctional mulberry silk fabric having hydrophobic and hydrophilic surfaces using VUV excimer lamp, Surf. Coat. Technol., 201(2007), 7286-7291.
M. Montazer, S. Seifollahzadeh, Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment, Photochem. Photobiol., 87(2011), 877-883.
I. K. Konstantinou, T. A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations a review, Appl. Catal. B, 49(2004), 1-14.
A. Fujishima, X. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63(2008), 515-582.
R. Dastjerdi, M. Montazer, S. Shahsavan, A novel technique for producing durable multifunctional textiles using nanocomposite coating, Colloids Surf. B., 81(2010), 32-41.
Zare, A. (2023). Application of β-CD to Control the Release of ZnO Nanoparticles on the Silk Fabric Surface Along with Citric Acid as Eco-friendly Cross-linker. Progress in Color, Colorants and Coatings, 16(3), 295-307. doi: 10.30509/pccc.2023.167048.1193
MLA
Zare, A. . "Application of β-CD to Control the Release of ZnO Nanoparticles on the Silk Fabric Surface Along with Citric Acid as Eco-friendly Cross-linker", Progress in Color, Colorants and Coatings, 16, 3, 2023, 295-307. doi: 10.30509/pccc.2023.167048.1193
HARVARD
Zare, A. (2023). 'Application of β-CD to Control the Release of ZnO Nanoparticles on the Silk Fabric Surface Along with Citric Acid as Eco-friendly Cross-linker', Progress in Color, Colorants and Coatings, 16(3), pp. 295-307. doi: 10.30509/pccc.2023.167048.1193
CHICAGO
A. Zare, "Application of β-CD to Control the Release of ZnO Nanoparticles on the Silk Fabric Surface Along with Citric Acid as Eco-friendly Cross-linker," Progress in Color, Colorants and Coatings, 16 3 (2023): 295-307, doi: 10.30509/pccc.2023.167048.1193
VANCOUVER
Zare, A. Application of β-CD to Control the Release of ZnO Nanoparticles on the Silk Fabric Surface Along with Citric Acid as Eco-friendly Cross-linker. Progress in Color, Colorants and Coatings, 2023; 16(3): 295-307. doi: 10.30509/pccc.2023.167048.1193