Optical and Physical Properties for the Nanocomposite Poly(vinyl chloride) with Affected of Carbon Nanotube and Nano Carbon

Document Type : Original Article

Authors

1 Department of Chemistry, College of Education, University of Samarra, P.O. Box: 64546, Salah Al Din, Iraq

2 Polymer Research Unit, College of Science, Al-Mustansiriyah University, P.O. Box: 10052, Baghdad, Iraq

3 Department of Mechanical Engineering, College of Engineering, Al-Nahrain University, P.O. Box: 64040, Jadria, Baghdad, Iraq

Abstract

In this paper, the new nanocomposite thin films of carbon nanotube (CNT) and nano carbon (CN) implanted in PVC matrix were produced by casting technique. The influence of nanomaterials (CNT+CN) was studied on the optical properties and structure of PVC nanocomposite thin films (PVC-CNT, PVC-CN, and PVC-CNT-CN) by utilizing a microscope, AFM device, and computerized diffused reflectance of UV-Visible. The energy gap, absorption coefficient, reflectance, extinction factor, refractive index, and urbach energy have been studied. The reflectance and transmittance of the nanocomposite thin films (PVC-CNT, PVC-CN, and PVC-CNT-CN) were decreased compared with blank PVC after being dispersed (CNT+CN) in the PVC matrix. The dielectric constant and conductivity of nanocomposite thin films also increased after adding nanomaterials (CNT+CN). The direct energy gap and indirect energy gap were decreased for the nanocomposite thin films (PVC-CNT, PVC-CN, and PVC-CNT-CN) compared with the energy gap of blank PVC, where, urbach energy of nanocomposite thin films (PVC-CNT, PVC-CN, and PVC-CNT-CN) increased after addition the nanomaterials (CNT+CN) to the PVC matrix. The SEM images were used to show the shape of carbon nanotube (CNT) and nano carbon (CN). The surface topography was tested by the AFM device and it found the roughness of the nanocomposite thin films (PVC-CNT, PVC-CN, and PVC-CNT-CN) were increased compared with the blank PVC. The application of nanocomposite thin films (PVC-CNT, PVC-CN, and PVC-CNT-CN) was used in many applications like optical clarity, high mechanical strength, and thermal gas barrier.

Keywords

Main Subjects


  1. S. N. Krivoshapko, The perspectives of application of thin-walled plastic and composite polymer shells in civil and industrial architecture, J. Reinf. Plast. Comp., 37(2018), 217-229. 
  2. F. Cogswell, The processing science of thermoplastic structural composites, Int Polym Process., 1(1987), 157-165. 
  3. Y. Z. Bao, H. Zhi-Ming, L. Shen-Xing, W. Zhi-Xue, Thermal stability, smoke emission and mechanical properties of poly (vinyl chloride)/hydrotalcite nanocomposites, Polym Degrad Stabil., 93 (2008), 448-455. 
  4. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites, Compos Part A: Appl Sci Manuf., 38(2007), 1675-1682.  
  5. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater., 19(2009), 1-6.  
  6. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R.K. Prud’homme, L. C. Brinson, Functionalized graphene sheets for polymer nanocomposites, Nature Nanotechnol., 3(2008), 327-331. 
  7. X. Zhao, Q. Zhang, D. Chen, P. Lu, Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites, Macromolecules., 43(2010), 2357-2363. 
  8. S. Kumar, M. Nehra, D. Kedia, N. Dilbaghi, K. Tankeshwar, K.H. Kim, Carbon nanotubes: a potential material for energy conversion and storage, Prog. Energy Combust. Sci., 64(2018), 219-53. 
  9. L. Sun, X. Wang, Y. Wang, Q. Zhang, Roles of carbon nanotubes in novel energy storage devices Carbon, N. Y., book, 122 (2017), 462-74. 
  10. A. F. A. Naim, H. Alfannakh, S. Arafat, S. S. Ibrahim, Characterization of PVC/MWCNT snanocomposite: solvent blend, Sci. Eng. Compos. Mater., 27(2020), 55-64. 
  11. G. Broza., K. Piszczek, K. Schulte, T. Sterzynski, Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT), Composites Sci. Technol., 67(2007), 890-894. 
  12. E. Abdel‑Fattah, A.I. Alharthi, T. Fahmy, Spectroscopic, optical and thermal characterization of polyvinyl chloride‑based plasma‑functionalized MWCNTs composite thin films, Appl. Phys. A, 475(2019), 1-8. 
  13. P. Molla-Abbasi, Effect of nano-size nodular structure induced by CNT promoted phase separation on the fabrication of superhydrophobic polyvinyl chloride films, Polym. Adv. Technol., 32(2021), 391-401. 
  14. G. He, X. Chen, Z. Sun, Interface engineering and chemistry of Hf-based high-k dielectrics on III–V substrates, Surf. Sci. Rep., 68(2013), 68-107. 
  15. R. N. Abed, A.R.N. Abed, F.A. Khamas, M. Abdallh, E. Yousif, High performance thermal coating comprising (CuO:NiO) nanocomposite/C spectrally selective to absorb solar energy, Prog. Color Colorants Coat., 13 (2020), 275-284. 
  16. W. Al-Taa’y, M.A. Nabi, R. Yusop, M. E. Yousif, B. M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly(vinyl chloride) films, Int. J. Polym. Sci., 2014 (2014), 1-6. 
  17. W.A. Al-Taa'y, A.A. Ameer, W. H. Al-Dahhan, M. Abddallh, E. Yousif, Optical constants of poly(vinyl chloride) doped by nano ZnO, J. Chem. Pharm. Res., 7(2015), 536-541. 
  18. A. Hassen, S. El-Sayed, M. Mm, A. El Sayed, Preparation, dielectric and optical properties of Cr2O3/ PVC nanocomposite films, J. Adv. Phys., 4(2018), 571-584. 
  19. R. Khordad, Absorbance of iron nanoparticles dispersed in the ethylene glycol and n-propanol, Armen. J. Phys., 9(2016), 211-219.  
  20. A.S.Hassanien, A.A.Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures, Appl. Phys. A, 752(2018), 1-16. 
  21. A. Yang, H. Fan, Y. Xuexi, J. Chen, Z. Li, Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation, Appl. Surf. Sci., 254(2008), 2685-2689. 
  22. Q. M. Al-Bataineh, A. M. Alsaad, A. A. Ahmad, A. Al-Sawalmih, Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: Sol–Gel method versus Ab initio calculations, J. Electron. Mater., 48(2019), 5028-5038. 
  23. M. D. Stamate, Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system, Thin Solid Films, 372(2000), 246-249. 
  24. D. Souri, Z. E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors, Int. J. Appl. Phys. B, 119(2015), 273-279. 
  25. R. N. Abed, M. Abdallh, A. A. Rashad, A. Hadawey, E. Yousif, New coating synthesis comprising CuO:NiO/C to obtain highly selective surface for enhancing solar energy absorption, J. Polym. Bull., 78(2021), 433-455. 
  26. R. N. Abed, M. Kadhom, D. S. Ahmed, A. Hadawey, E. Yousif, Enhancing optical properties of modified PVC and Cr2O3 nanocomposite, Trans. Electr. Electron. Mater., 22(2021), 317-327. 
  27. F. Urbach, The long wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev., 92(1953), 1324. 
  28. R. N. Abed, E. Yousif, A. R. N. Abed, A. A. Rashad, Synthesis thin films of poly(vinyl chloride) doped by aromatic organosilicon to absorb the incident light, Silicon, 223(2022), 33-45. 
  29. O. G. Abdullah, D. R. Saber, Optical absorption of poly-vinyl alcohol films doped with nickel chloride, Appl. Mech. Mater., 110-116(2012), 177-182. 
  30. R. N. Abed, A. R. N. Abed, E. Yousif, Carbon surfaces doped with (Co3O4-Cr2O3) nanocomposite for high-temperature photo thermal solar energy conversion via spectrally selective surfaces, Prog. Color Colorants Coat., 14(2021), 301-315. 
  31. A. S.Hassanien, A. A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films, Superlattice Microst., 89(2016), 153-169. 
  32. Z. M. Al-Azzawi, M. Al-Baidhani, A. R. N. Abed, R. N. Abed, Influence of nano silicon carbide (SiC) embedded in poly(vinyl alcohol) (PVA) lattice on the optical properties, Silicon, 14(2021), 5719-5732.
  33. A. M. Alsaad, A. A. Ahmad, I. A. Qattan, Q. M. Al-Bataineh, Z. Albataineh, Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped ZnO and group III elements (B, Al, Ga, and In)-doped ZnO thin films, Crystals, 252(2020), 1-17.
  34. R. N. Abed, A. R. N. Abed, Characterization effect of copper oxide and cobalt oxide nanocomposite on poly(vinyl chloride) doping process for solar energy applications, Prog. Color Colorants Coat., 15(2022), 235-241. 
  35. A. P. Safronov, A. Shankar, E. A. Mikhnevich, I. V. Beketov, Influence of the particle size on the properties of polyacrylamide ferrogels with embedded micron-sized and nano-sized metallic iron particles, J. Magn. Magn. Mater., 459(2018), 125-130.  
  36. N. Algethami, A. Rajeh, H. M. Ragab, A. E. Tarabiah, F. Gami, Characterization, optical, and electrical properties of chitosan/polyacrylamide blend doped silver nanoparticles, J. Mater. Sci.: Mater. Electron., 33(2022), 10645-10656