Schiff's Base Performance in Preventing Corrosion on Mild Steel in Acidic Conditions

Document Type : Original Article

Authors

1 Materials Engineering Department, Diyala University, P.O. Box: 32001, Diyala-Iraq

2 Chemical Engineering Department, University of Technology, P.O. Box: 10001, Baghdad-Iraq

3 Production and Metallurgy Engineering Department, University of Technology, P.O. Box: 10001, Baghdad, Iraq

4 Al-Farahidi University, Baghdad, P. O. Box: 10001, Baghdad, Iraq.

5 Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univerversiti Kebangsaan Malaysia, P.O. Box: 43600 UKM Bangi, Selangor, Malaysia

6 Energy and Renewable Energies Technology Center, University of Technology, P.O. Box: 10001, Baghdad, Iraq

Abstract

Many industries, particularly the oil and gas industry, extensively use metallic materials. However, steel is negatively impacted by corrosion, which decreases the functioning of its surfaces. Therefore, finding a solution to the corrosion challenge is imperative. To prevent mild steel from corroding in a 1 M hydrochloric acid medium, a Schiff base named methyl 5-(((((2-hydroxynaphthalen-1-yl)methylene)amino))-1-methyl-1H-pyrazole-4-carboxylate (MMPC) was utilized. Weight loss measurements and theoretical calculations were conducted to explore the effectiveness and mechanism of corrosion protection. MMPC adsorbs onto mild steel, blocking active sites, and the adsorption follows the Langmuir adsorption isotherm model. Based on a free energy ( ) value of -37.25 KJmol-1, physical adsorption and chemical adsorption are two separate adsorption modes. At a concentration of 0.5 mM and 303 K, the findings demonstrate that MMPC showed an excellent inhibitor effectiveness of 97.13 %. The acid reaction site is blocked by the inhibitor adsorbed onto the mild steel surface. Density Functional Theory (DFT) at the B3LYP/6-311 G++ basis set was also used to determine the effectiveness of the inhibitor, and the results demonstrated that MMPC is an effective inhibitor. 

Keywords

Main Subjects


  1. G. E. Badr, The role of some thiosemicarbazide derivatives as corrosion inhibitors for C-steel in acidic media, Corros, Sci., 51(2009), b2529-2536.
  2. M. Goyal, S. Kumar, I. Bahadur, C. Verma, E. Ebenso, Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review, J. Mol. Liq., 256(2018), 565-573.
  3. S. Ghareba, S. Omanovic, Interaction of 12-aminododecanoic acid with a carbon steel surface: towards the development of ‘green’ corrosion inhibitors, Corros. Sci., 52(2010), 2104-2113.
  4. A. Yıldırım, M. Cetin, Synthesis and evaluation of new long alkyl side chain acetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors, Corros. Sci., 50(2008), 155-165.
  5. S. K. Saha, A. Dutta, P. Ghosh, D. Sukul, P. Banerjee, P. Novel, Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and theoretical approach, Phys. Chem. Chem. Phys., 18(2016), 17898-17911.
  6. X. Li, S. Deng, H. Fu, Three pyrazine derivatives as corrosion inhibitors for steel in 1.0 M H2SO4 solution, Corros. Sci., 53(2011), 3241-3247.
  7. M. Karelson, V. Lobanov, A. Katritzky Quantum-chemical descriptors in QSAR/QSPR studies, Chem. Rev., 96(1996), 1027-1044.
  8. J. Kumaran, S. Priya, J. Gowsika, N. Jayachandramani, S. Mahalakshmi, Synthesis, Spectroscopic Characterization, In silico DNA studies and antibacterial activites of copper(II) and zinc(II) complexes derived from thiazole based pyrazolone derivatives, Res. J. Pharm. Biol. Chem. Sci., 4(2013), 279-288.
  9. M. M. El-Naggar, Bis-aminoazoles corrosion inhibitors for copper in 4 0 M HNO3 solutions, Corros. Sci., 42(2000), 773-789.
  10. I. Lukovits, E. Kálmán, F. Zucchi, Corrosion inhibitors-correlation between electronic structure and efficiency, Corrosion, 57(2001), 3-14.
  11. O. Kikuchi, Systematic QSAR procedures with quantum chemical descriptors, Quant. Struct.-Act. Relat., 6(1987), 179-188.
  12. K. F. Khaled, K. F. Scientific fraud in corrosion science research: a review, Res. Chem. Intermediates, 40(2014), 1735-1752.
  13. ASTM International, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test., 2011, pp 1-9.
  14. NACE International, Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solutions at Temperatures below 93 °C (200 F), TM0193-2016-SG, 2000.
  15. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).
  16. T. Koopmans, Ordering of wave functions and eigenenergies to the individual electrons of an atom, Physica, 1(1933), 104-113.
  17. L. Larabi, Y. Harek, O. Benali, S. Ghalem, Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl, Prog. Org. Coat., 54(2005), 256-262.
  18. I. Lukovits, E. Kálmán, F. Zucchi, Corrosion inhibitors-correlation between electronic structure and efficiency, Corrosion, 57(2001), 3-14.
  19. A. Zarrouk, A. Dafali, B. Hammouti, H. Zarrok, S. Boukhris, M. Zertoubi, Synthesis, characterization and comparative study of functionalized quinoxaline derivatives towards corrosion of copper in nitric acid medium, Int. J. Electrochem. Sci., 5(2010), 46-53.
  20. A. Fiala, A. Chibani, A. Darchen, A. Boulkamh, K. Djebbar, Investigations of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives, Appl. Surf. Sci., 253(2007), 9347.
  21. Q. Jawad, D. Zinad, R. Salim, A. Al-Amiery, T. Gaaz, M. Takriff, A. Kadhum, Synthesis, characterization, and corrosion inhibition potential of novel thiosemicarbazone on mild steel in sulfuric acid environment, Coatings, 9(2019), 729-736. 
  22. I. Aziz, M. Abdulkareem, I. Annon, M. Hanoon, M. Al-Kaabi, L. Shaker, A. Alamiery, W. Wan Isahak, M. Takriff, Weight Loss, Thermodynamics, SEM, and electrochemical studies on N-2-methylbenzylidene-4-antipyrineamine as an inhibitor for mild steel corrosion in hydrochloric acid, Lubricants, 10(2022), 23-36. 
  23. A. Al-Amiery, A. Kadhum, A. Kadihum, A. Mohamad, C. How, S. Junaedi, Inhibition of mild steel corrosion in sulfuric acid solution by new schiff base, Materials, 7(2014), 787-804. 
  24. I. Alkadir Aziz, I.A. Annon, M. Abdulkareem, M. Hanoon, M. Alkaabi, L. Shaker, A. Alamiery, W. Wan Isahak, M. Takriff, Insights into corrosion inhibition behavior of a 5-mercapto-1,2,4-triazole derivative for mild steel in hydrochloric acid solution: experimental and DFT studies, Lubricants, 9(2021), 122-132
  25. K. Al-Azawi, S. Al-Baghdadi, A. Mohamed, A. Al-Amiery, T. Abed, S. Mohammed, A. Kadhum, A. Mohamad, Synthesis, inhibition effects and quantum chemical studies of a novel coumarin derivative on the corrosion of mild steel in a hydrochloric acid solution, Chem. Central J., 10(2016), 1-9
  26. A. Alamiery, Study of corrosion behavior of N'-(2-(2-oxomethylpyrrol-1-yl) ethyl) piperidine for mild steel in the acid environment, Biointerface Res. Appl. Chem., 12(2022), 3638-3646
  27. A. Al-Amiery, A. Mohamad, A. Kadhum, l. Shaker, W. Isahak, M. Takriff, Experimental and theoretical study on the corrosion inhibition of mild steel by nonanedioic acid derivative in hydrochloric acid solution, Sci. Rep., 12(2022), 1-21.
  28. A. Alamiery, A. Mohamad, A. Kadhum, S. Takriff, Comparative data on corrosion protection of mild steel in HCl using two new thiazoles, Data Brief, 40(2022), 107838
  29. A.M. Mustafa, F.F. Sayyid, N. Betti, L.M. shaker, M.M. Hanoon, A.A. Alamiery, A.A.H. Kadhum, M.S. Takriff, Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl)phenyl)-1,3,4-triazole, South African J. Chem. Eng., 39(2022), 42-51.
  30. A. Alamiery, Investigations on corrosion inhibitory effect of newly quinoline derivative on mild steel in HCl solution complemented with antibacterial studies, Biointerface Res. Appl. Chem., 12(2022), 1561-1568
  31. A. Aziz, I.A. Annon, M. Abdulkareem, M. Hanoon, M. Alkaabi, L. Shaker, A. Alamiery, W. Wan Isahak, M. Takriff,  Insights into corrosion inhibition behavior of a 5-mercapto-1,2,4-triazole derivative for mild steel in hydrochloric acid solution: experimental and DFT etudies, Lubricants, 9(2021), 122-134.
  32. A. Alamiery, W. Isahak, M. Takriff, Inhibition of mild steel corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide: Gravimetrical, adsorption and theoretical studies, Lubricants, 9(2021), 93-109.
  33. M.A. Dawood, Z.M.K. Alasady, M.S. Abdulazeez, D.S. Ahmed, G.M. Sulaiman, A.A.H. Kadhum, L.M. Shaker and A.A. Alamiery, The corrosion inhibition effect of a pyridine derivative for low carbon steel in 1 M HCl medium: Complemented with antibacterial studies, Int. J. Corros. Scale Inhib., 10(2021), 1766-1782.
  34. A. Alamiery, Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1-propyl)-1,3,4-oxadiazole on mild steel in 1 M hydrochloric acid medium: Insight from gravimetric and DFT investigations, Mater. Sci. Energy Technol., 4(2021), 398-406.
  35. A. Alamiery, Short report of mild steel corrosion in 0.5 m H2SO4 by 4-ethyl-1-(4-oxo-4-phenylbutanoyl) thiosemicarbazide, J. Tribol, 30(2021), 90-99.
  36. A. Alamiery, Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 0.5 M sulfuric acid: gravimetrical and theoretical studies, Mater. Sci. Energy Technol., 4(2021), 263-273.
  37. A. Alamiery, W. Isahak, H. Aljibori, H. Al-Asadi, A. Kadhum, Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yl-n-(2,5-dimethyl-pyrrol-1-yl)benzoylamine in 1.0 m HCl solution, Int. J. Corros. Scale Inhib., 10(2021), 700-713.
  38. A. Alamiery, E. Mahmoudi and T. Allami, Corrosion inhibition of low-carbon steel in hydrochloric acid environment using a Schiff base derived from pyrrole: gravimetric and computational studies, Int. J. Corros. Scale Inhib., 10(2021), 749-765.
  39. A.J.M. Eltmimi, A. Alamiery, A.J. Allami, R.M. Yusop, A.H. Kadhum, T. Allami, Inhibitive effects of a novel efficient Schiff base on mild steel in hydrochloric acid environment, Int. J. Corros. Scale Inhib., 10(2021), 634-648.
  40. A. Alamiery, L. Shaker, A. Allami, A. Kadhum, M. Takriff, A study of acidic corrosion behavior of Furan-Derived schiff base for mild steel in hydrochloric acid environment: Experimental, and surface investigation, Mater. Today: Proc., 44(2021), 2337-2341.
  41. S. Al-Baghdadi, A. Al-Amiery, T. Gaaz, A. Kadhum, Terephthalohydrazide and isophthalo-hydrazide as new corrosion inhibitors for mild steel in hydrochloric acid: Experimental and theoretical approaches, Koroze Ochrana Materialu, 65(2021), 12-22.
  42. M. Hanoon, A. Resen, L. Shaker, A. Kadhum, A. Al-Amiery, Corrosion investigation of mild steel in aqueous hydrochloric acid environment using n-(Naphthalen-1yl)-1-(4-pyridinyl)methanimine complemented with antibacterial studies, Biointerface Res. Appl. Chem., 11(2021), 9735-9743.
  43. S. Al-Baghdadi, T. Gaaz, A. Al-Adili, A. Al-Amiery, M. Takriff, Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation, Inter. J. Low-Carbon Technol., 16(2021), 181-188.
  44. A. Al-Amiery, Anti-corrosion performance of 2-isonicotinoyl-n-phenylhydrazinecarbothioamide for mild steel hydrochloric acid solution: Insights from experimental measurements and quantum chemical calculations, Surf. Rev. Lett., 28(2021), 2050058.
  45. M. S. Abdulazeez, Z. S. Abdullahe, M. A. Dawood, Z.K. Handel, R.I. Mahmood, S. Osamah, A.H. Kadhum, L. M. Shaker, A. A. Al-Amiery, Corrosion inhibition of low carbon steel in HCl medium using a thiadiazole derivative: weight loss, DFT studies and antibacterial studies, Int. J. Corros. Scale Inhib., 10(2021), 1812-1828.
  46. A. Mustafa, F. Sayyid, N. Betti, M. Hanoon, A. Al-Amiery, A. Kadhum, M. Takriff, Inhibition Evaluation of 5-(4-(1H-pyrrol-1-yl)phenyl)-2-mercapto-1,3,4-oxadiazole for the corrosion of mild steel in an acidic environment: thermodynamic and DFT aspects, Tribologia-Finnish J. Tribol., 38(2021), 39-47.
  47. Y. M. Abdulsahib, A. J. M. Eltmimi, S.A. Alhabeeb, M.M. Hanoon, A. A. Al-Amiery, T. Allami, A. A. H. Kadhum, Experimental and theoretical investigations on the inhibition efficiency of N-(2,4-dihydroxytolueneylidene)-4-methylpyridin-2-amine for the corrosion of mild steel in hydrochloric acid, Int. J. Corros. Scale Inhib., 10(2021), 885-899.
  48. A. Khudhair, A. Mustafa, M. Hanoon, A. Al-Amiery, L. Shaker, T. Gazz, A. Mohamad, A. Kadhum, M. Takriff, Experimental and theoretical investigation on the corrosion inhibitor potential of N-MEH for mild steel in HCl, Prog. Color Colorant Coat., 15(2021), 111-122.
  49. D. Zinad, R. Salim, N. Betti, L. Shaker, A. AL-Amiery, Comparative investigations of the 
    corrosion inhibition efficiency of a 1-phenyl-2-(1-phenylethylidene)hydrazine and its analog against mild steel corrosion in hydrochloric acid solution, Prog. Color Colorants Coat., 15(2021), 53-63
  50. R. Salim, N.  Betti, M. Hanoon, A., Al-Amiery, 2-(2,4-Dimethoxybenzylidene)-N-Phenylhydrazinecarbothioamide as an Efficient Corrosion Inhibitor for Mild Steel in Acidic Environment, Prog. Color Colorants Coat., 15(2021), 45-52
  51. A. Al-Amiery, L. Shaker, A. M. Takriff, Exploration of furan derivative for application as corrosion inhibitor for mild steel in hydrochloric acid solution: Effect of immersion time and temperature on efficiency, Mater. Today: Proc., 42(2021), 2968-2973
  52. A. M. Resen, M. M. Hanoon, W. K. Alani, A. Kadhim, A. A. Mohammed, T. S. Gaaz4, A. A. H. Kadhum, A. A. Al-Amiery, M. S. Takriff, Exploration of 8-piperazine-1-ylmethylumbelliferone for application as a corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Corros. Scale Inhib., 10(2021), 368-387. 
  53. M. Hanoon, A. Resen, A. Al-Amiery, A. Kadhum, T. Takriff, Theoretical and experimental studies on the corrosion inhibition potentials of 2-((6-Methyl-2-ketoquinolin-3-yl)methylene) hydrazinecarbothio-amide for mild steel in 1 M HCl, Prog. Color Colorants Coat., 15(2021), 21-33.
  54. F. Hashim, T. Salman, S. Al-Baghdadi, T. Gaaz, A. Al-Amiery, Inhibition effect of hydrazine-derived coumarin on a mild steel surface in hydrochloric acid, Tribologia, 37(2020), 45-53.
  55. A. M. Resen, M. Hanoon, R. D. Salim, A. A. Al-Amiery, L. M. Shaker, A. A. H. Kadhum, Gravimetrical, theoretical, and surface morphological investigations of corrosion inhibition effect of 4-(benzoimidazole-2-yl) pyridine on mild steel in hydrochloric acid, Koroze Ochrana Materialu, 64(2020), 122-130.  
  56. A. Salman, Q. Jawad, K. Ridah, L. Shaker, A. Al-Amiery, Selected BIS-thiadiazole: synthesis and corrosion inhibition studies on mild steel in HCl environment, Sur. Rev. Lett., 27(2020), 2050014