Fluorescence Quenching Study of Nano Graphene Oxide Interaction with Naphthalimide Dye: Thermodynamic and Binding Characteristics

Document Type : Original Article

Authors

1 Department of Polymer Engineering, Kish International Campus, University of Tehran, P.O. Box: 141763-3644, Kish Island, Iran

2 Department of Organic Colorant, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

3 Center of Excellence for Color Science and Technology, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

4 School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran. Iran

Abstract

A quenching study was reported for interacting a fluorescence naphthalimide derivative with graphene oxide (GO) as a quencher. 1,8-naphthalimide fluorophore with two amine functional side arms (NN2) was synthesized and characterized. Many different 1,8-naphthalimide fluorescence dye derivatives have been designed for fluorescence probe application. Fluorescence quenching-based platforms in nanoscale have extensively been used in sensing systems. Raman, FTIR, UV-Vis, and fluorescence spectroscopic techniques were used to study GO and NN2 characteristics and their photophysical and quenching mechanisms at different temperatures. The results indicated that graphene plays an effective quencher against the naphthalimide molecule, with quenching efficiently at 91 %. The Stern-Volmer analysis results show a mix of static and dynamic quenching mechanisms. The binding constant of the quencher and fluorophore and the number of binding sites have been reported. Thermodynamic parameters of their interaction were evaluated. The negative values of the ΔG confirm that the complexation process is spontaneous. Meanwhile, the positive entropy value confirms the favourable pathway process. 

Keywords

Main Subjects


  1. X. J. Lee, B. Y. Z. Hiew, K. C. Lai, L. Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, S. Rigby, Review on graphene and its derivatives: Synthesis methods and potential industrial implementation, J. Taiwan Inst. Chem. Eng., 98(2019), 163-180. 
  2. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22(2010), 3906-3924. 
  3. A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 6(2007), 183-191. 
  4. D. Shahdeo, A. Roberts, N. Abbineni, S. Gandhi, Graphene based sensors, Compreh. Anal. Chem., 91(2020), 175-199. 
  5. C. H. Lu, H. Yang, A graphene platform for sensing biomolecules, Angew.Chem., 48(2009), 4785-4797.
  6. E. Narvaez, A. Merkoci, Graphene oxide as an optical biosensing platform, Adv. Funct. Mater., 24(2012), 3298-3308. 
  7. K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nature Chem., 2(2010), 1015-1024.
  8. Y. Zhau, X. Gang, Review on the graphene based optical fiber chemical and biological sensor, Sensors Actuators B Chem., 231(2016), 324-340. 
  9. X. G. Gao, L. X. Cheng, W. S. Jiang, X. K. Li, F. Xing, Graphene and its derivatives-based optical sensors, Front. Chem., 9(2021), 615164. 
  10. Z. Ifrah, A. Shah Rukh, S. Muhammad Nauman, S. Maryam, U. Rahat, Fluorescence quenching of graphene quantum dots by chloride ions: A potential optical biosensor for cystic fibrosis, Front. Mater., 9(2022), 857432. 
  11. H. Chen, Q. Gao, J. Li, Jm. Lin, Graphene materials-based chemiluminescence for sensing, J. Photochem. Photobiol. C: Photochem. Rev., 27(2016), 54-71. 
  12. N. A. A. Anas, Y. W. Fen, N. A. S. Omar, W. M. E. M. M. Daniyal, N. S. M. Ramdzan, S. Saleviter, Development of graphene quantum dots-based optical sensor for toxic metal ion detection, Sensors,19(2019), 3850. 
  13. A. Kasry, A. A. Ardakani, G. S. Tulevski, B. Menges, M. Copel, L. Vyklicky, Highly efficient fluorescence quenching with graphene, J. Phy. Chem. C, 116(2012), 2858-2862. 
  14. X. Xiao, Y. Zhang, L. Zhou, B. Li, L. Gu, Photoluminescence and fluorescence quenching of graphene oxide: A review, Nanomaterials,12(2022), 2444. 
  15. S. Kagatikar, D. Sunil, A systematic review on 1,8-naphthalimide derivatives as emissive materials in organic light-emitting diodes, J. Mater. Sci., 57(2022), 105-139. 
  16. N. Jain, N. Kaur, A comprehensive compendium of literature of 1,8-naphthalimide based chemosensors from 2017 to 2021, Coordin. Chem. Rev., 459(2022), 214454. 
  17. R. Tandon, V. Luxami, N. Tandon, K. Paul, Recent developments on 1,8-naphthalimide moiety as potential target for anticancer agents, Bioorg. Chem., 121(2022), 105677. 
  18. D. Gudeika, A review of investigation on 4-substituted 1,8-naphthalimide derivatives, Synthetic Metals., 262(2020), 116328. 
  19. M. Gharagozlou, S. Rouhani, A New reusable mercury-sensitive turn-on nano-chemosensor based on functionalized CoFe2O4@SiO2 magnetic nano-composite, Prog. Color Colorants Coat., 15(2022), 75-85. 
  20. S. Seraj, S. Rouhani, A fluorescence quenching study of naphthalimide dye by graphene mechanism and thermodynamic properties, J. Fluores., 27(2017), 1877-1883 
  21. S. Seraj, S. Rouhani, F. Faridbod, Naphthalimide-based optical turn-on sensor for monosaccharide recognition using boronic acid receptor, RSC Adv., 9(2019), 17933-17940. 
  22. S. Seraj, S. Rouhani, Synthesis and fluorescence quenching mechanism of novel naphthalimide derivative by nanographene oxide, Chem. Phys. Lett., 780(2021), 138895. 
  23. C. Manivannan, R. Renganathan, A study on the fluorescence quenching of 9-Aminoacridine by certain antioxidants, J. Luminescence.,131(2011), 2365-2371. 
  24. Y. Kitamoto, T. Namikawa, T. Suzuki, Y. Miyata, H. Kita, T. Sato, S. Oi, Dimesitylarylborane-based luminescent emitters exhibiting highly-efficient the\rmally activated delayed fluorescence for organic light-emitting diodes, Org. Electron., 34(2016), 208-217. 
  25. F. T. Johra, J. Lee, W. Jung, Uv-vis characterization of GO: Facile and safe graphene preparation on solution based platform, J. Indus. Eng. Chem., 20(2014), 2883-2887. 
  26. J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer; 3rd edition, 2006.
  27. W. R. Laws, P. B. Contino, Fluorescence quenching studies: Analysis of nonlinear Stern-Volmer data, Methods Enzymology, 210(1992), 448-463.
  28. R. S. Swathi, K. L. Sebastian, Resonance energy transfer from a dye molecule to graphene, J. Chem. Phys., 129(2008), 054703. 
  29. R. S. Swathi, K. L. Sebastian, Long range resonance energy transfer from a dye molecule to graphene has (distance)− 4 dependence, J. Chem. Phys., 130(2009), 086101. 
  30. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M. Tascon, Graphene oxide dispersions in organic solvents, Langmuir, 24(2008), 10560-10564. 
  31. J. R. Lakowicz, Topics in fluorescence spectroscopy, Plenum Press, New York, 2002 .   
  32. A. Airinei, R. I. Tigoianu, E. Rusu, D. O. Dorohoi, Fluorescence quenching of anthracene by nitroaromatic compounds, Dig. J. Nanomater. Biostruct., 6(2011), 1265-1272. 
  33. F. Galindo, M. Isabel Burguete, R. Gavara, S. V. Luis, Fluorescence quenching in organogel as a reaction medium, J. Photochem. Photobiol. A: Chem., 178(2006), 57-61.