Polysulfone Ultrafiltration Membranes Embedded with Silica Nanoparticles for Enhanced Dye Removal Performance

Document Type : Original Article

Authors

1 Environmental Engineering Department, College of Engineering, Mustansiriyah University, P.O. Box: 10052, Baghdad, Iraq

2 Environment and Water Directorate, Ministry of Science and Technology, P.O. Box 2490, Baghdad, Iraq

Abstract

Membrane systems are considered clean and environmentally acceptable for removing dyes from wastewater. Concern about the aquatic environment, which protects humans, is raising demand for its use. This study used polysulfone polymer (PSU) with nanoparticles (SiO2) by phase inversion. In this case, ultrafiltration membrane (UF) performance was improved. SiO2 nanoparticles (0, 0.025, 0.050, and 0.075 wt. %) were examined, and the polymer concentration was kept constant at 17 wt. %. FTIR, SEM, and AFM tests were used to characterize the composition and structure of the membrane. With varied SiO2 nanoparticle concentrations, the membrane shape changed. Different operating factors such as pressure and dye concentration effect on the permeability flux and removal percentage of Congo Red and Malachite Green dyes were studied. The dye concentration was 100 ppm at 2 to 7 bar. The composite membrane permeability improved because SiO2 nanoparticles increased membrane porosity. The results of casting solution composition, membrane mechanical properties, microstructures, water flux, and dye removal were evaluated. Therefore, the ideal SiO2 nanoparticles concentration in the membrane ultrafiltration is 0.025 wt. %. This membrane has a high removal efficiency of 99.5 % at 2 bar, which is the optimum operating pressure, and 98.75 % at 7 bar. 

Keywords

Main Subjects


  1. A. Islam et al., Step towards the sustainable toxic dyes removal and recycling from aqueous solution-A comprehensive review, Resour. Conserv. Recycl., 175(2021), 105849.
  2. Y. Mu et al., Fabrication of hybrid ultrafiltration membranes with improved water separation properties by incorporating environmentally friendly taurine modified hydroxyapatite nanotubes, J. Memb. Sci., 577(2019), 274-284.
  3. A. Ben Fradj, A. Boubakri, A. Hafiane, S. Ben Hamouda, Removal of azoic dyes from aqueous solutions by chitosan enhanced ultrafiltration, Results Chem., 2(2020), 100017.
  4. M. Berradi et al., Textile finishing dyes and their impact on aquatic environs,  Heliyon, 5(2019), 02711.
  5. S. M. Etezad, M. Sadeghi-Kiakhani, Decolorization of malachite green dye solution by bacterial biodegradation, Prog. Color. Colorant Coat., 14(2021), 79-87.
  6. S. Javadian, F. Hooshmand, S. A. Asadzadeh, Aggregation of an anionic azo dye with conventional cationic surfactants in premicellar region, Prog. Color. Colorant Coat., 4(2011), 121-128.
  7. N. de C. L. Beluci, et al., Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye, Sci. Total Environ., 664(2019), 222-229.
  8. A. Paz, J. Carballo, M. J. Pérez, J. M. Domínguez, Biological treatment of model dyes and textile wastewaters, Chemosphere, 181(2017), 168-177.
  9. P. V Nidheesh, M. Zhou, M. A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197(2018), 210-227.
  10. C. Zhan, et al., Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water, Environ. Sci. Water Res. Technol., 6(2020), 3080-3090.
  11. P. R. Sharma, S. K. Sharma, T. Lindström, B. S. Hsiao, Nanocellulose‐enabled membranes for water purification: perspectives, Adv. Sustain. Syst., 4(2020), 1900114.
  12. H. Albatrni, H. Qiblawey, M. H. El-Naas, Comparative study between adsorption and membrane technologies for the removal of mercury, Sep. Purif. Technol., 257(2021), 117833.
  13. S. G. Muntean, O. Paska, S. Coseri, G. M. Simu, M. E. Grad, G. Ilia, Evaluation of a functionalized copolymer as adsorbent on direct dyes removal process: kinetics and equilibrium studies, J. Appl. Polym. Sci., 127(2013), 4409-4421.
  14. Y. L. Pang, A. Z. Abdullah, Current status of textile industry wastewater management and research progress in Malaysia: a review, Clean–Soil, Air, Water, 41(2013), 751-764.
  15. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97(2006), 1061-1085.
  16. M. Li, Y. Yao, W. Zhang, J. Zheng, X. Zhang, L. Wang, Fractionation and concentration of high-salinity textile wastewater using an ultra-permeable sulfonated thin-film composite,  Environ. Sci. Technol., 51(2017), 9252-9260.
  17. Q. Zhang et al., Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles, Appl. Surf. Sci., 410(2017), 494-504.
  18. Y. Huang, X. Feng, Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments, J. Memb. Sci., 586(2019), 53-83.
  19. E. Filloux, B. Teychene, A. Tazi-Pain, J.P. Croue, Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance, Sep. Purif. Technol., 134(2014), 178-186.
  20. H. Ghani, M. Kadhom, A. A. Husain, A. Jawad, E. Yousif, Study of photodecomposition rate constant and surface morphology of PVC films Eembedded with Tin (IV) complexes, Prog. Color. Colorant Coat., 15(2022), 319-326.
  21. B. M. Ganesh, A. M. Isloor, A. F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination, 313(2013), 199-207.
  22. G. L. Jadav and P. S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Memb. Sci., 328(2009), 257-267.
  23. E. Celik, H. Park, H. Choi, H. Choi, Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment, Water Res., 45(2011), 274-282.
  24. T. Hwang, M. R. Kotte, J. I. Han, Y. K. Oh, M. S. Diallo, Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles, Water Res., 73(2015), 181-192.
  25. Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane, J. Memb. Sci., 288(2007), 231-238.
  26. M. Parsamanesh, Y. Mansourpanah, A. Dadkhah Tehrani, Improving the efficacy of PES-based mixed matrix membranes incorporated with citric acid–amylose-modified MWCNTs for HA removal from water, Polym. Bull., 78(2021), 1293-1311.
  27. C. N. Matindi et al., Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles, J. Memb. Sci., 620(2021), 118868.
  28. R. S. Zambare, K. B. Dhopte, P. R. Nemade, C. Y. Tang, Effect of oxidation degree of GO nanosheets on microstructure and performance of polysulfone-GO mixed matrix membranes, Sep. Purif. Technol., 244(2020), 116865.
  29. L. J. Zhu, et al., Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly (2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive, J. Memb. Sci., 451(2014), 157-168.
  30. M. S. Muhamad, M. R. Salim, W. J. Lau, T. Hadibarata, Z. Yusop, Removal of bisphenol A by adsorption mechanism using PES–SiO2 composite membranes, Environ. Technol., 37(2016), 1959-1969.
  31. M. S. Muhamad, M. R. Salim, W. J. Lau, Preparation and characterization of PES/SiO2 composite ultrafiltration membrane for advanced water treatment, Korean J. Chem. Eng., 32(2015), 2319-2329.
  32. K. Kalash, M. Kadhom, M. Al-Furaiji, Thin film nanocomposite membranes filled with MCM-41 and SBA-15 nanoparticles for brackish water desalination via reverse osmosis, Environ. Technol. Innov., 20(2020), 101101.
  33. Y. M. Mojtahedi, M. R. Mehrnia, M. Homayoonfal, Fabrication of Al2O3/PSf nanocomposite membranes: efficiency comparison of coating and blending methods in modification of filtration performance, Desalin. Water Treat., 51(2013), 6736-6742.
  34. M. E. A. Ali, A. Shahat, T. I. Ayoub, R. M. Kamel, Fabrication of high flux polysulfone/mesoporous silica nanocomposite ultrafiltration membranes for industrial wastewater treatment, Biointerface Res. Appl. Chem, 12(2022), 7556-7572.
  35. M. W. Ashraf, N. Abulibdeh, A. Salam, Selective removal of malachite green dye from aqueous solutions by supported liquid membrane technology, Int. J. Environ. Res. Public Health, 16(2019), 3484.
  36. V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes, Sep. Purif. Technol., 90(2012), 69-82.
  37. Z. H. Zhou, J. M. Xue, H. S. O. Chan, J. Wang, Nanocomposites of ZnFe2O4 in silica: synthesis, magnetic and optical properties, Mater. Chem. Phys., 75(2002), 181-185.
  38. G. J. Copello, A. M. Mebert, M. Raineri, M. P. Pesenti, L. E. Diaz, Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol–gel method, J. Hazard. Mater., 186(2011), 932-939.
  39. M. Kadhom, J. Yin, B. Deng, A thin film nanocomposite membrane with MCM-41 silica nanoparticles for brackish water purification, Membranes (Basel)., 6(2016), 50.
  40. J. F. Li, Z. L. Xu, H. Yang, L. Y. Yu, M. Liu, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane, Appl. Surf. Sci., 255(2009), 4725-4732.
  41. A. Razmjou, J. Mansouri, V. Chen, The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, J. Memb. Sci., 37(2011), 73-84.
  42. A. Idris, N. M. Zain, M. Y. Noordin, Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives, Desalination, 207(2007), 324-339.
  43. M. Esmaeili, S. S. Madaeni, J. Barzin, The dependence of morphology of solid polymer electrolyte membranes on transient salt type: effect of cation type, Polym. Int., 59(2010), 1006-1013.
  44. N. Ghaemi et al., Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe3O4 nanoparticles, Chem. Eng. J., 263(2015),101-112.
  45. X. Cao, J. Ma, X. Shi, Z. Ren, Effect of TiO2 nanoparticle size on the performance of PVDF membrane, Appl. Surf. Sci., 253(2006), 2003-2010.
  46. H. Yamamura, K. Kimura, T. Okajima, H. Tokumoto, Y. Watanabe, Affinity of functional groups for membrane surfaces: implications for physically irreversible fouling, Environ. Sci. Technol., 42(2008), 5310-5315.
  47. V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/ polyethersulfone nanocomposite, J. Memb. Sci., 375(2011), 284-294.
  48. M. Safarpour, V. Vatanpour, A. Khataee, Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance, Desalination, 393(2016), 65-78.
  49. P. Daraei, S. S. Madaeni, N. Ghaemi, M. A. Khadivi, B. Astinchap, R. Moradian, Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: Study of magnetic field induced casting, Sep. Purif. Technol., 109(2013), 111-121.
  50. M. R. Kakar, M. O. Hamzah, J. Valentin, A review on moisture damages of hot and warm mix asphalt and related investigations, J. Clean. Prod., 99(2015), 39-58.
  51. A. L. Ahmad, A. A. Abdulkarim, Z. M. H. M. Shafie, B. S. Ooi, Fouling evaluation of PES/ZnO mixed matrix hollow fiber membrane, Desalination, 403(2017), 53-63.
  52. A. Sotto et al., Improved membrane structures for seawater desalination by studying the influence of sublayers, Desalination, 287(2012), 317-325.
  53. S. Rajesh, K. H. Shobana, S. Anitharaj, D. R. Mohan, Preparation, morphology, performance, and hydrophilicity studies of poly (amide-imide) incorporated cellulose acetate ultrafiltration membranes, Ind. Eng. Chem. Res., 50(2011), 5550-5564.
  54. C. H. Koo, A. W. Mohammad, M. Z. M. Talib, Review of the effect of selected physicochemical factors on membrane fouling propensity based on fouling indices, Desalination, 287(2012), 167-177.
  55. R. Kumar, A. M. Isloor, A. F. Ismail, S. A. Rashid, A. Al Ahmed, Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes, Desalination, 316(2013), 76-84.
  56. L. Y. Ng, A. W. Mohammad, C. P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination, 308(2013), 15-33.
  57. G. S. Ajmani et al., Modification of low pressure membranes with carbon nanotube layers for fouling control, water Res., 46(2012), 5645-5654.
  58. M. Kadhom, W. Hu, B. Deng, Thin film nanocomposite membrane filled with metal-organic frameworks UiO-66 and MIL-125 nanoparticles for water desalination, Membranes (Basel)., 7(2017), 31.
  59. A. Cui, Z. Liu, C. Xiao, Y. Zhang, Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS, J. Memb. Sci., 360(2010), 259-264.
  60. S. Saberi, A. A. Shamsabadi, M. Shahrooz, M. Sadeghi, M. Soroush, Improving the transport and antifouling properties of poly (vinyl chloride) hollow-fiber ultrafiltration membranes by incorporating silica nanoparticles, ACS omega, 3(2018), 17439-17446.
  61. L. Wang et al., Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: characterization from microforces, Environ. Sci. Technol., 47(2013), 3708-3714.
  62. N. F. Shoparwe, T. A. Otitoju, A. L. Ahmad, Fouling evaluation of polyethersulfone (PES)/sulfonated cation exchange resin (SCER) membrane for BSA separation, J. Appl. Polym. Sci., 135(2018), 45854.
  63. A. L. Ahmad, T. A. Otitoju, B. S. Ooi, Optimization of a high performance 3-aminopropyltriethoxysilane-silica impregnated polyethersulfone membrane using response surface methodology for ultrafiltration of synthetic oil-water emulsion, J. Taiwan Inst. Chem. Eng., 93(2018), 461-476.
  64. T. A. Otitoju, A. L. Ahmad, B. S. Ooi, Polyethersulfone composite hollow-fiber membrane prepared by in-situ growth of silica with highly improved oily wastewater separation performance, J. Polym. Res., 24(2017), 1-11.
  65. M. R. S. Kebria, M. Jahanshahi, A. Rahimpour, SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions, Desalination, 367(2015), 255-264.
  66. S. A. Hosseini, M. Vossoughi, N. M. Mahmoodi, M. Sadrzadeh, Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles, J. Clean. Prod., 183(2018), 1197-1206.
  67. T. Tavangar, M. Karimi, M. Rezakazemi, K. R. Reddy, and T. M. Aminabhavi, Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes, Chem. Eng. J., 385(2020), 123787.
  68. R. J. Kadhim, F. H. Al-Ani, M. Al-Shaeli, Q. F. Alsalhy, A. Figoli, Removal of dyes using graphene oxide (GO) mixed matrix membranes, Membranes (Basel)., 10(2020), 366.
  69. M. K. Paidi, V. Polisetti, K. Damarla, P. S. Singh, S. K. Mandal, P. Ray, 3D natural mesoporous biosilica-Embedded polysulfone made ultrafiltration membranes for application in separation technology, Polymers (Basel)., 14(2022), 1750.