A Study on the Colored Glazed Tiles of Soltaniyeh Dome: an Analytical Approach

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Karaj Branch, Islamic Azad University, P.O. Box: , Karaj, Iran

2 Institute for Color Science and Technology, Department of Inorganic Pigments and Glaze, P.O. Box: 16765-654, Tehran, Iran

Abstract

The destructive tests are limited for investigate the ancient buildings and non-destructive tests or statistical approaches are preferred instead. In this research, the chemical composition of Soltaniyeh Dome tiles was investigated with a statistical approach. Characterization of colored glazed tiles belonging to historical collection of SD was performed using portable XRF, followed by comparison of samples using PCA/Euclidean distance analysis was made. Decorated motifs which were investigated in this study were blue, green, yellow, white and black colors. According to the classification performed by principal component analysis, three groups of glaze composition, consist of bright colors (Group 1), dark colors (Group 2) and sky blue color (Group 3) was recorded. The results indicated the main differences in the chemical composition of samples while having similarities in the existing colors. The reason was related to the different sources of raw materials which has been provided in periods of time. A similarities were observed between the color composition of pottery glazed tiles and the color composition reported on gypsum surfaces by previous researchers.

Keywords

Main Subjects


1.   P. Vandenabeele, M. K. Donais, Mobile spectroscopic instrumentation in archaeometry research, Appl. Spectrosc., 70(2016), 27-41. 
2.   P. J. Potts, M. West (Eds.), Portable X-Ray Fluorescence Spectrometry: Capabilities for in Situ Analysis, RSC Publisher, Cambridge, UK, 2008, 291.
3.   A. N. Shugar, J. L. Mass, Handheld XRF for Art and Archaeology, Leuven University Press, Belgium, 2014.
4.   M. Uda, A. Ishizaki, R. Satoh, K. Okada, Y. Nakajima, D. Yamashita, K. Ohashi, Y. Sakuraba, A. Shimono, D. Kojima, Portable X-ray diffractometer equipped with XRF for archaeometry, Nuclear Instruments Method Phy. Res. Sec. B: Beam Inter. Mater. Atoms, 239(2005), 77-84.
5.   V. Crupi, S. D’Amico, L. Denaro, P. Donato, D. Majolino, G. Paladini, R. Persico, M. Saccone, C. Sansotta, G. V. Spagnolo, V. Venuti, Mobile spectroscopy in archaeometry: some case study, J. Spectroscopy, (2018), 1-11.
6.  P. Moioli, C. Seccaroni, Analysis of art objects using a portable X-Ray Fluorescence spectrometer, X-Ray Spectrom., 29 (2000), 48-52.
7.  R. Faghfoori, H. Bolkhari Ghehi, G. Soltani, theosophical principles of light and colour in the architecture and decorations of soltaniyeh dome, Inter. J. Arts., 4(2014), 8-16.
8.  M. Dehghan Banadakia, A. Sharifi Mehrjardi, A Comparative Analysis of Decorative Motifs of Seyed Shams-o-ddin Tomb in Yazd and the Soltaniyeh Dome in Zanjan, Iran, Inter. J. Appl. Arts Studies, 2(2017), 57-70.
9.  M. M. Aniran, Structure of Soltaniyeh Dome and the project of the southern vault crack restoration, Australian J. Basic Appl. Sci., 6(2012), 357-364. 
10.  www.itto.org/iran/attraction/Dome-of-Soltaniyeh/
11.  D. N. Wilber, The architecture of Islamic Iran: The IlKhānid period, Princeton university press, United States of America, 1995.
12.  H. Sobouti, A. Ghasemi, H. Ebadei, A study on the decorations of ilkhani era: A case study of dome of soltaniyeh, The Turkish Online Journal of Design, Art and Communication-TOJDAC (2016), Special Edition, 614-623.
13. L. Balilan Asl, S. Hasanpour Loumer, H. Fayyaz Moghaddam, Interpretation of numerical concepts and geometric codes hidden in the decoration and architecture of Soltaniyeh dome, Negareh J., (2021).
14.  M. Shirvani, Study of pigments in decorations of exterior porch painting in soltaniyeh dome of Zanjan, J. Res. Archaeom., 5(2019), 129-142.
15.  S. Yousefnejad, Technical and comparative study of monochrome turquoise nare tile of the ilkhanid and safavid periods (dome of Soltaniyeh and Sheikh Safi Al-Din Ardabili’s shrine as the case study), J. Res. Archeom., 6(2020), 91-106.
16.  N. Sheikh, Application of radiation chemistry for image restoration of ancient Iranian colored pottery, Radiation Phys. Chem., 47(1996), 551-553.
17.  M. Lamehi-Rachti, P. Oliaiy, j. Rahighi, F. Shokouhi, Application of PIXRF in the analysis of archaeological glazed tiles, Nuclear Instrum. Methods Phys. Res. Section B, 184(2001), 430-436.
18.  P. Moradi, A. R. Razeghi, F. Bahrololumi, F A. Asadi, Soltaniyeh dome tiles: scientific investigation and diagnostic for conservation, 2nd International Congress Chemistry for Cultural Heritage, Turkish chemical society, Turkey, (2012), 137.
19.  P. Holakooei, F C. Petrucci, R. Tassinaria, C. Vaccaro, Application of WDXRF in the provenance studies of Persian haft rang tiles: a statistical approach, X-Ray Spectrom. 42(2013), 105-115.
20.  G. Simsek, B. Demirsar Arlib, S. Kayac, P. Colomban, J. Eur. Ceram. Soc., 39(2019), 2199-2209.
21.   E. Grifoni, S. Legnaioli, G. Lorenzetti, S. Pagnotta, V. Palleschi, Application of graph theory to unsupervised classification of materials by Laser-Induced Breakdown Spectroscopy, Spectrochimica. Acta Part B. 118(2016), 40-44.
22.    V. Palleschi, L. Pagani, S. Pagnotta, G. Amato, S. Tofanelli, Application of graph theory to the elaboration of personal genomic data for genealogical research, Peer J Computer Science., 1(2015), 1-17.
23.  L. Bonizzoni, A. Galli, M. Milazzo, XRF analysis without sampling of Etruscan depurate pottery for provenance classification, X-Ray Spectrometry, 39(2010), 346-352.
24. L. Bonizzoni, A. Galli, G. Poldi, In situ EDXRF analyses on Renaissance plaquettes and indoor bronzes patina problems and provenance clues, X-Ray Spectrometry, 37(2008), 388-394.
25. E. Franceschi, I. Cascone, D. Nole, Study of artificially degraded woods simulating natural ageing of archaeological findings, J. Thermal Anal. Calorim., 92(2008), 319-322. 
26.   L. Bonizzoni, A. Galli, G. Poldi, M. Milazzo, in situ non-invasive EDXRF analysis to reconstruct stratigraphy and thickness of Renaissance pictorial multilayers, X-Ray Spectrometry, 36(2007), 55-61.
27.   E. Odelli, V. Palleschi, S. Legnaioli, F. Cantini, S. Raneri, Graph clustering and portable X-Ray Fluorescence: an application for in situ, fast and preliminary classification of transport amphoras, Spectrochimica Acta Part B. 172(2020), 1-9.
28.  V. Panchuk, I. Yaroshenko, A. Legin, V. Semenov, D. Kirsanov, Application of chemo metric methods to XRF-data – a tutorial review, Anal. Chim. Acta, 1040(2018), 19-32.
29. G. Musumarra, M. Fichera, Chemometrics and cultural heritage, Chemometrics and Intelligent Laboratory Systems , 44(1998), 363-372.
30.  D. Seetha, G. Velraj, Characterization and chemometric analysis of ancient pot shards trenched from Arpakkam, Tamil Nadu, India, J. Appl. Res. Technol, 14(2016), 345-353, 
31.   M. Gajić-Kvaščev, M. Marić-Stojanović, R. Jančić-Heinemann, G. Kvaščev, Vd. Andrić, Non-destructive characterization and classification of ceramic artefacts using pEDXRF and statistical pattern recognition, Chem. Cent. J., 6 (2012), 1-9.
32.  I. Papageorgiou, I. Liritzis, Multivariate mixture of normals with unknown number of components: an application to cluster neolithic ceramics from Aegean and Asia minor using portable XRF, Archaeometry., 49(2007), 795-813.
33.  R. Ikeoka, C. Appoloni, P. Parreira, F. Lopes, A. Bandeira, PXRF and multivariate statistics analysis of pre-colonial pottery from northeast of Brazil, X-Ray Spectrom. 41(2012), 12-15.
34. G. Barone, P. Mazzoleni, G. V. Spagnolo, S. Raneri, Artificial neural network for the provenance study of archaeological ceramics using clay sediment database, J. Cult. Herit., 38(2019), 147-157.
35. K. Pearson, Principal components analysis, Philosophical Magazine, 2(1901), 559-572.
36.  X. P. Gao, L. L. Chen, Y. Z. Liu, B. W. Sun, PCA-RBF neural network model-based urban water consumption prediction, Water Res. Hydropower Eng. (Shuili Shuidian Jishu) 48(2017), 1-6.
37.   F. Bardelli, G. Barone, V. Crupi, F. Longo, D. Majolino, P. Mazzoleni, V. Venuti, Combined non-destructive XRF and SR-XAS study of archaeological artefacts. Anal. Chem. Cul. Heritage, 399(2011), 3147-3153.
38.  D. Frankel, J. M. Webb, Pottery production and distribution in prehistoric Bronze Age Cyprus. An application of pXRF analysis, J. Archaeol. Sci., 39 (2012), 1380-1387.
39.  Y. Goren, H. Mommsen, J. Klinger, Non-destructive provenance study of cuneiform tablets using portable X-ray fluorescence (pXRF), J. Archaeol. Sci., 38(2011), 684-696.
40.  M. Hall, U. Maeda, M. Hudson, Pottery production on rishiri island, Japan: perspectives from X-ray fluorescence studies, Archaeometry, 44(2002), 213-228.
41.  A. J. Sakalis, N. A. Kazakis, N. Merousis and N. C. Tsirliganis, Study of neolithic pottery from Polyplatanos (Imathia) using micro X-ray fluorescence spectroscopy, stereoscopic microscopy and multivariate statistical analysis, J. Cult. Heritage, 14(2012), 485-498.
42.  B. S. Everitt, Dictionary of Statistics, Cambridge University Press, Cambridge, UK., 1998, 96.
43. L. Wilkinson; M. Friendly, The History of the Cluster Heat Map, Amer. Statist., 63 (2009), 179-184.
44. L. Letunic, P. Bork, Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation, Bioinformatics, 23(2007), 127–128. 
45. M. Feizi, H. Laleh, F. Mahjour, Sepehr Bariin” A Summer Residence in Sultāniyya Plain, Pazhoheshha-ye Bastan shenasi Iran, 9(2020), 129-148.
46.  D. Gypsy. Nandi, R. Kumar Sharma, Data science fundamentals and practical approaches: understand why data science Is the next (english edition), ‎BPB Publications, Delhi, 2020.