Cefuroxime: A Potential Corrosion Inhibitor for Mild Steel in Sulphuric Acid Medium

Document Type : Original Article

Authors

Department of Chemistry, Manav Rachna University, Faridabad-221004, P.O. Box: 452001, Haryana India

Abstract

An antibiotic drug, cefuroxime, is applied on the mild steel surface after the expiry date is over, in various concentrations in 0.5 M sulphuric acid solution, to study the corrosion inhibition by using the weight loss method at various temperatures ranging from 298 to 338 K. Potentiodynamic polarization techniques, i.e., polarization resistance and tafel polarization and Electrochemical Impedance Spectroscopy studies were done at room temperature and the results are in good agreement with the weight loss data. It has a high inhibition activity at lower temperatures. It is found that inhibition efficiency decreases with the increase in time and acid concentration. The activation parameters, Gibbs free energy, enthalpy, and entropy of the reaction were also calculated. It is postulated that the inhibition process is the physical adsorption of the cefuroxime on the metal surface. Langmuir's adsorption isotherm governs the adsorption process. It is also supported by the roughness calculation done by the atomic force microscopic technique.

Keywords

Main Subjects


1.   Z. Tao, S. Zhang, W. Li, B. Hou, The role of metal cations in improving the inhibitive performance of hexamine on the corrosion of steel in hydrochloric acid solution, Corros. Sci., 51 (2009), 2588-2595.
2.   A. K. Singh, S. K. Shukla, M. A. Quraishi, Corrosion behaviour of mild steel in sulphuric acid solution in presence of ceftazidime, Int. J. Electrochem. Sci. 6 (2011), 5802-5814. 
3.   G. E. Badr, The role of some thiosemicarbazide derivatives as corrosion inhibitors for C-steel in acidic media, Corros. Sci., 51 (2009), 2529-2536.
4.   K. Aramaki, Effects of organic inhibitors on corrosion of zinc in an aerated 0.5 M NaCl solution, Corros. Sci., 43 (2011), 1985-2000.
5.   A. Yagan, N. O. Pekmez, A. Yildiz, Corrosion inhibition by poly(N-ethylaniline) coatings of mild steel in aqueous acidic solutions, Prog. Org. Coat., 57 (2006), 314-318.
6.   M.G. Mohamed, A. Mahdi, R.J. Obaid, M.A. Hegazi, S.W. Kuo, K.I. Aly, Synthesis and characterization of polybenzoxazine/clay hybrid nanocomposites for UV light shielding and anti-corrosion coatings on mild steel, J.Polym Res 28, 297 (2021), 264
7.   M. G. Mohamed, S. W. Kuo, A. Mahdi, I. M. Ghayd, K. I. Aly, Bisbenzylidene cyclopentanone and cyclohexanone-functionalized polybenzoxazine nanocomposites: Synthesis, characterization, and use for corrosion protection on mild steel, Materials Today Communications 25 (2020), 101418.
8.   K. I. Aly, A. Mahdi, M. A. Hegazi, N. S. Al-Muaikel, S.W. Kuo, M.G. Mohamed, Corrosion resistance of mild steel coated with Phthalimide-Functionalized polybenzoxazines, Coatings, 10 (11), 1114. 
9.   K. I. Aly, M. G. Mohamed, O. Younis, M. H. Mahross, M.A. Hakim, M.M. Sayed, Salicylaldehyde Azine-Functionalized Polybenzoxazine: Synthesis, Characterization, and its Nanocomposites as Coatings for Inhibiting the Mild Steel Corrosion, Prog. Org. Coat., 138 (2020), 105385, 
10.   A. A. Al-Juhni, B. Z. Newby, Incorporation of benzoic acid and  sodium benzoate into silicone coatings and subsequent leaching of  the compound from the incorporated coatings,” Prog. Org. Coat., 56 (2006), 135-145. 
11.  J. M. Hu, J. T. Zhang, J. Q. Zhang, C. N. Cao, Corrosion electrochemical characteristics of red iron oxide pigmented epoxy coatings on aluminium alloys, Corros. Sci., 47 (2005), 2607-2618.
12.  M. Hosseini, S. F. L. Mertens, M. Ghorbani, M. R. Arshadi, Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Mater. Chem. Phys., 78 (2003), 800-808.
13.   S. K. Shukla, M. A. Quraishi, The effects of pharmaceutically active compound doxycycline on the corrosion of mild steel in hydrochloric acid solution, Corros. Sci., 52 (2010), 314-321.
14.  D. G. Y. Silvère, B. K. Valery, K. M. Guy-Richard, O. Augustin, T. Albert, Cefadroxil Drug   as Corrosion Inhibitor for Aluminum in 1 M HCl Medium: Experimental and Theoretical Studies, IOSR J. Appl. Chem., 11 (2018), 24-36. 
15.  M. Alfakeer, M. Abdallah and A. Fawzy, Corrosion Inhibition Effect of Expired Ampicillin and Flucloxacillin Drugs for Mild Steel in Aqueous Acidic Medium, Int. J. Electrochem. Sci., 15 (2020), 3283- 3297. 
16.   S. K. Shukla, A. K. Singh, I. Ahamad, M. A. Quraishi, Streptomycin: A commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution, Matter. Lett., 63 (2009), 819-822.
17.  P. O. Ameh, U. M. Sani, Cefuroxime axetil: A commercially available drug as corrosion inhibitor for aluminum in hydrochloric acid solution, Port. Electrochim. Acta, 34 (2016), 131-141. 
18.  M. Chigondo, F. Chigondo, Recent natural corrosion inhibitors for mild steel: an overview, J. Chem., (2016), 6208937. 
19. M. A. Hegazy, H. M. Ahmed, A. S. El-Tabei, Investigation of the inhibitive effect of p-substituted 4-(N,N,N-dimethyldodecylammonium bromide) benzyl-idene-benzene-2-yl-amine on corrosion of carbon steel pipelines in acidic medium, Corros. Sci., 53 (2011), 671-678.
20.  K. Zhang, X. Bin, W. Yang, X. Yin, Y. Liu, Y. Chen, Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution, Corros. Sci., 90 (2015), 284-295.
21. M. A. Quraishi., S. Khan, Inhibition of mild steel corrosion in sulfuric acid solution by thiadiazoles, J. Appl. Electrochem. 36 (2006), 539-544.
22. M. A. Quraishi, I.Ahmad, A.K. Singh, S.K. Shukla, B. Lal, V. Singh, N-(Piperidinomethyl)-3-[(pyridylidene) amino]isatin: A new and effective acid corrosion inhibitor for mild steel, Mater. Chem. Phys., 112 (2008), 1035-1039. 
23.  A. Pal, S. Dey, D. Sukul, Effect of temperature on adsorption and corrosion inhibition characteristics of gelatin on mild steel in hydrochloric acid medium, Res Chem Intermed, 42 (2016,) 4531-4549.
24. O. Olivares, N. V. Likhanova, B. Gomez, J. Navarrete, M. E. Llanos-Serrano, E. Arce, J. M. Hallen, Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment, Appl. Surf. Sci., 252 (2006), 2894-2909.
25.   M. A. Quraishi, J. Rawat, M. Ajmal, Dithiobiurets: a novel class of acid corrosion inhibitors for mild steel, J. Appl. Electrochem., 30 (2000), 745-751.
26.  M. G. A. Khedr, A. M. S. Lashien, The role of metal cations in the corrosion and corrosion inhibition of aluminium in aqueous solutions, Corros. Sci., 33 (1992), 137-151.
27. M. Schorr, J. Yahalom, The significance of the energy of activation for the dissolution reaction of metal in acids, Corros. Sci., 12 (1972), 867-868.
28.   M. A. Ameer, E. Khamis, G. Al-Senani, Effect of temperature on stability of adsorbed inhibitors on steel in phosphoric acid solution, J. Appl. Electrochem., 32 (2002), 149-156. 
29.  S. K. Shukla, A. K. Singh, L. C. Murulana, M. M. Kabanda, E.E. Ebenso, Inhibitive effect of azorubine dye on the corrosion of mild steel in hydrochloric acid medium and synergistic iodide effect, Int. J. Electrochem. Sci., 7 (2012), 5057-5068.
30.   M. M. Osman, R. A. El-Ghazawy, A.M. Al-Sabagh, Corrosion inhibitor of some surfactants derived from maleic–oleic acid adducts on mild steel in 1 M H2SO, Mater. Chem. Phys., 80 (2003), 55-62. 
31. S. S. Abdel Rehim, A. M. Magdy, K. F. Ibrahim, 4-Aminoantipyrine as an inhibitor of mild steel corrosion in HCl solution, J. Appl. Electrochem., 29 (1999), 593-599.
32.  M. Bouklah, B. Hammouti, M. Lagrenee, F. Bentiss, Thermodynamic properties of 2,5-bis(4-methoxy-phenyl) -1,3,4-oxadiazole as corrosion inhibitor for mild steel in normal sulfuric acid medium, Corros. Sci., 48 (2006), 2831-2842.
33.  A. Ehsani, G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi, H. M. Shiri,  Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electro-chemical noise analysis and density functional theory, J. Colloid Interface Sci., 490 (2017), 444-451. 
34.  H. Ashassi-Sorkhabi, M. R. Majidi, K. Seyyedi, Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution, Appl. Surf. Sci., 225 (2004), 176-185.
35. M. A. Mostfa, H. Gomaa, I. M. M. Othman, A. M. A. Gomaa, Experimental and theoretical studies of a novel synthesized azopyrazole-benzenesulfonamide derivative as an efficient corrosion inhibitor for mild steel, J. Iran Chem. Soc., 18 (2021), 1231-1241.
36.  P. P. Kumari, P. Shetty, A. R. Suma, Electrochemical measurements for the corrosion inhibition of mild steel in 1 M hydrochloric acid by using an aromatic hydrazide derivative, Arab. J. Chem., 10 (2017), 653-663.
37.  R. Manickavasagam, K. J. Karthik, M. Paramasivam, S.V. Iyer, Poly(styrene sulphonic acid) -doped poly aniline on mild steel in acid Media, Anticorros. Methods Mater., 49 (2002), 19-26.
38.  S. Tanwer, S. K. Shukla, Recent advances in the applicability of drugs as corrosion inhibitor on metal surface: A Review, Current Research in Green and Sustainable Chemistry, 5 (2022), 100227. 
39. K. F. Khaled, Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles, Electrchim. Acta, 53 (2008), 3484-3492.
40. A. Srhiri, M. Etman, F. Dabosi, Electro and physicochemical study of corrosion inhibition of carbon steel in 3 % NaCl by alkylimidazoles, Electrochim. Acta. 41 (1996), 429-437.
41. F.N. Grosser, R.S. Gonclaves, Electrochemical evidence of caffeine adsorption on zinc surface in ethanol, Corros. Sci. 50 (2008), 2934-2938.
42.   R. C. A. Bredar, L. A. Chown, R. B. Burton, B. H. Farnum, Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications, ACS Appl. Energy Mater., 3 (2020), 66-98.
43.  S. Martinez, M. Mansfeld-Hukovic, A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors, J. Appl. Electrochem., 33 (2003), 1137-1142.
44.  S.K. Shukla, M. A. Quarishi, 4-Substituted anilinomethylpropionate: New and efficient corrosion inhibitors for mild steel in hydrochloric acid solution, Corros. Sci. 51 (2009), 1990-1997.
45.  M. Lebrini, M. Traisnel, M. Lagrenee, B. Mernari, F. Bentiss, Inhibitive properties, adsorption and a theoretical study of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles as corrosion inhibitors for mild steel in perchloric acid, Corros.Sci., 50 (2008), 473-479.
46.  S. Benita, A. J. Abdul Nasser, S. Rajendran, Inhibitive action of hydroquinone-Zn2+ System in controlling the corrosion of carbon steel in well water, Int. j. Engg. Sci. Tech., 2 (2010), 341-357. 
47.  A.K. Singh, M.A. Quraishi, Investigation of the effect of disulfiram on corrosion of mild steel in hydrochloric acid solution, Corros. Sci. 53 (2011) 1288-1297.
48. B. Wang, M. Du, J. Zhang, C. J. Gao, Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion, Corros. Sci., 53 (2011), 353-361.
49. S. K. Shukla, M. A. Quraishi, Cefotaxime sodium: A new and efficient corrosion inhibitor for mild steel in hydrochloric acid solution, Corros. Sci 51 (2009), 1007-1011.
50. S. Tanwer, S. K. Shukla, Corrosion inhibition activityof Cefixime on mild steel surface in aqueous sulphuric acid, Prog. Color Colorants Coat. 15 (2022), 243-255.