Solution Combustion Synthesis of MnAl2O4 Brown Pigments Using Different Fuel Mixtures

Document Type : Original Article

Authors

1 Department of Inorganic Pigments and Glazes, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran‎‏,‏ Iran‏.‏

2 Central Lab, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran‎‏,‏ Iran‏.‏

Abstract

This paper reports the synthesis of spinel manganese aluminates (MnAl2O4) brown pigments via microwave-assisted solution combustion using different urea-glycine fuel mixtures. The synthesized samples were analyzed through all the following methods: thermal analysis, X-ray diffractometry (XRD), scanning electron microscopy (SEM), and colorimetry. The results showed that amorphous flakes are obtained via one-step solution combustion under microwave radiation. They are then converted to the MnAl2O4 and minor structural changes due to manganese valence variation after calcination at 1000 °C. The mean crystallite size in the case of the fuel mixture after calcination at 1000 °C was 23 nm. The fuel type slightly affected the combusted flake-like microstructure before calcination. However, the porous flakes converted to nonporous nanoparticles after calcination by increasing the glycine content. The sample obtained by the combustion of fuel mixture (75:25 weight ratio) after calcination at 1000 °C had the highest reflection intensity, especially in the red region due to the formation of the MnAl2O4 crystal structure. The hue and saturation of the sample were 62.7 and 27.69, respectively. The red, yellow, and brightness coordinates were 12.69 (a*), 24.61 (b*), and 45.76 (L*), respectively. As a result, the synthesized pigment can be a promising candidate for the production of ceramic inks compared with the commercial brown pigments [9.02 (a*), 13.62 (b*), and 33.61 (L*)]. The bandgap of the samples immediately after combustion was in the range of 4 eV, which was in good agreement with the results reported for the MnAl2O4 band gap (4.03 eV). 

Keywords

Main Subjects


  1. A. Varma, A. S. Mukasyan, A. S. Rogachev, K. V. Manukyan, Solution Combustion Synthesis of Nanoscale Materials, Chem. Rev., 116(2016), 14493-14586.
  2. F. Deganelloa, A. Kumar Tyagi, Solution combustion synthesis, energy and environment: Best parameters for better materials, Prog. Cryst. Growth Charact. Mater., 64 (2018), 23-61.
  3. E. Novitskaya, J. P. Kelly, S. Bhaduri, O. A. Graeve, A review of solution combustion synthesis: an analysis of parameter controlling powder characteristics, Int. Mater. Rev., 66(2021), 188-214.
  4. Z. Yavari, Z. Ghahramani, A. M. Arabi, M. Noroozifar, Nanosized palladium loaded on porous ceria: A three-dimensional boosted electrocatalyst for electrooxidation of C1 compounds, Int. J. Hydrogen. Energy, 45(2020), 21319-21330.
  5. Z. Ghahramani, A. M. Arabi, M. Shafiee Afarani, M. Mahdavian, Solution combustion synthesis of cerium oxide nanoparticles as corrosion inhibitor, Int. J. Appl. Ceram. Technol., 17(2020), 1514-1521.
  6. M. Zahiri, M. Shafiee Afarani, A. M. Arabi, Dual functions of thiourea for solution combustion synthesis of ZnO/ZnS composite powders: fuel and sulphur source, Appl. Phys. A., 124(2018), 1-6.
  7. M. Zahiri, M. Shafiee Afarani, A. M. Arabi, Combustion synthesis of ZnO/ZnS nanocomposite phosphors, J. Fluoresc., 29 (2019), 1227-1239.
  8. B. Karimi, A. M. Arabi, F. Najafi, M. Shafiee Afarani, CNT–CdSe QDs nanocomposites: synthesis and photoluminescence studies, J. Mater. Sci. Mater., 29 (2018), 13499-13507.
  9. H. Shirzadeh Derabi, M. Shafiee Afarani, A. M. Arabi, D.Mohebbi Kalhori, Co-precipitation Synthesis of CdTe/ZnS, ZnSe, CdS and CdSe Core-Shell Quantum Dots, J. Color. Sci. Technol., 13(2019), 89-98.
  10. T. Tatarchuk, A. Shyichuk, J. Lamkiewicz, J. Kowalik, Inversion degree, morphology and colorimetric parameters of cobalt aluminate nanopigments depending on reductant type in solution combustion synthesis, Ceram. Int., 46(2020), 14674–14685.
  11. S. Mestre, M.D. Palacios, P. Agut, Solution Combustion Synthesis of (Co,Fe)Cr2O4 pigments, J. Eur. Ceram. Soc., 32(2012), 1995-1999.
  12. S. Rasouli, Sh. Saket. One Step Rapid Synthesis of Nano-Crystalline ZnO by Microwave-AssistedSolution Combustion Method, Prog. Color Colorants Coat., 3(2010), 19-25.
  13. S. Rasouli, M. Valefi, S. J. Moeen, A. M. Arabi, Microwave-assisted gel combustion synthesis of ZnO-Co nano-pigments, J. Ceram. Process. Res., 12 (2011), 450-455.
  14. X. Kang, C. Li, Z. Zheng, X. Cui, Synthesis of ZnO and Cu-doped ZnO nanocrystalline by solution combustion method and their catalytic effects on thermal behavior of KClO4, Combust. Sci. Technol., 193(2021), 75-89.
  15. R. Ianoş, R. Lazău, R. Băbuță, E. Muntean, E. A. Moacă, C. Păcurariu, Solution combustion synthesis: a straightforward route for the preparation of chromium-doped lanthanum aluminate, LaAl1-xCrxO3, pink red pigments, Dyes. Pigm., 155(2018), 218-224.
  16. M. Dondi, M. Blosi. D. Gardini, Z. Chiara, Ceramic pigments for digital decoration inks: an overview, Ceram. Forum Int., 89(2012), E59-E64.
  17. Sh. Salem, S.H. Jazayeri, A. Allahverdi, M.Shirvani, CoAl2O4 Nano pigment obtained by combustion synthesis, Int. J. Appl. Ceram. Technol., 9(2012), 968-978.
  18. Sh. Salem, S.H. Jazayeri, F. Bondioli, A. Allahverdi, M. Shirvani, Synthesis conditions of cobalt aluminate nano-sized powder, J. Ceram. Sci. Technol., 2(2011), 169-178.
  19. S. Rasouli, A. M. Arabi, High speed preparation of GdCaAl3O7:Eu nano-phosphors by microwave-assisted combustion approach, Prog. Color Colorants Coat., 3(2010), 110-117.
  20. S. Rasouli, A. M. Arabi, A. Naeimi, S. M. Hashemi, Microwave-assisted combustion synthesis of ZnO:Eu nanoparticles: effect of fuel types, J. Fluoresc., 28(2018), 167-172.
  21. D. Bovand, A. M. Arabi, M. Bovand, Microwave assisted solution combustion synthesis of β-tricalcium phosphate nano-powders, Bol. Soc. Esp. Ceram. Vidrio., 57(2018), 240-246.
  22. M. Shahmirzaee, M. Shafiee Afarani, A. Iran Nejhad, A. M. Arabi, Microwave-assisted combustion synthesis of ZnAl2O4 and ZnO nanostructure particles for photocatalytic wastewater treatment, Part. Sci. Technol., 37 (2019), 110-117.
  23. M. Zahiri, M. Shafiee Afarani, A. M. Arabi, Synthesis of zinc oxide and zinc oxide/zinc sulfide nano composite via solution combustion route, Mater. Res. Express., 6(2019), 1250g5.
  24. M. Shafiei Chafi, B. Ghasemi, A.M. Arabi, Solution combustion synthesis (SCS) of chrome alumina as a high temperature pink pigment, Int. J. Appl. Ceram. Technol., 15(2018), 203-209.
  25. M. Ataeefard, A. M. Aarabi, Producing ceramic toner via emulsion aggregation method based on ZrSiO4: Pr ceramic pigment, Prog. Color Colorants Coat., 14(2021), 113-120.
  26. K. Mokhtari, Sh. Salem, A novel method for the clean synthesis of nanosized cobalt based blue pigments, RSC. Adv., 7(2017), 29899-29908.
  27. P. Xiaojin, Z. Qi, C. Jinshu, Y. Jian, W. Ya, J. Junnan, Preparation and characterization of a stable nano-CoAl2O4 ink for glass decoration by ink-jet printing, Mater. Res., 20(2017), 1340-1344.
  28. B. Tanisan, S. Turan, Synthesis of Fe-Mn black pigments by using hematite waste and manganese ore mixtures, Trans. Indian .Ceram. Soc., 71(2012),17-20.
  29. L. J. Almeida,E. C. Grzebielucka,S. R. M. Antunes, C. P. F. Borges, A. V. C. de Andrade,É. C. F. de Souza, Synthesis of brown inorganic pigments with spinel structure from the incorporation of spent alkaline batteries, Mater. Res., 23(2020), e20190515.
  30. D. F.L. Horsth, J. O. Primo, M. Dalpasquale, C. Bittencourt, F. J. Anaissi, Colored aluminates pigments obtained from metallic aluminum waste, an opportunity in the circular economy, Clean. Eng. Technol., 5(2021), 100313.
  31. A. Shafiekhani, H. Saeid Firozeh, Influence of Fe@MnAl2O4 and synthesis of novel compound Mn0.83Fe0.21Al1.96O4, Phys. B: Condens. Matter., 421(2013) 122–126.
  32. M. Edrissi, M. Soleymani, M. Naderi, Synthesis of MnAl2O4 nanocrystallites by Pechini and sequential homogenous precipitation methods: characterization, product comparison, photocatalytic effect, and Taguchi optimization, J. Sol-Gel. Sci. Technol., 64(2012), 485-492.
  33. R. C.S.Navarro, R. R.de Avillez, T. FreireGoes, A. M.S.Gomes, Low temperature thermal and volumetric behavior of MnAl2O4 spinel, J. Mater. Res. Technol., 9(2020), 4194-4205.
  34. A. L. Patterson, The scherrer formula for X-Ray particle size determination, Phys. Rev., 56(1939), 978-982.
  35. Y. Tong, J. Ma, S. Zhao, H. Huo, H. Zhang, A salt-assisted combustion method to prepare well-dispersed octahedral MnCr2O4 spinel nanocrystals, J. Nanomater., 2015, 214978.
  36. Sh. M. Khaliullin,V. D. Zhuravlev, V. G. Bamburov, A. Khort , S. I. Roslyakov, G. V. Trusov, D. O. Moskovskikh, Effect of the residual water content in gels on solution combustion synthesis temperature, J. Sol-Gel Sci. Technol., 93(2020), 251–261.
  37. L. A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G. J. Exarhos, Glycine-nitrate combustion synthesis of oxide ceramic powders, Mater. Lett., 10(1990), 6-12.
  38. K. W. Bort, H.R. Ferreira,D. Galante, F. J. A. Marcia, G. P. Valenga, Structural and morphological behaviour and study of the colorimetric and reflective properties of commercial inorganic pigments, S. Afr. J. Chem., 72(2019), 215-221.
  39. P. Bhavani, A. Manikandan, S.K. Jaganathan, S. Shankar, S. A. Antony, Enhanced catalytic activity, facile synthesis and characterization studies of spinel Mn–Co aluminate nano-catalysts, J. Nanosci. Nanotechnol., 18(2018), 1388-1395.
  40. R. N. Abed, M. Kadhom,D. S. Ahmed,A. Hadawey, E. Yousif, Enhancing optical properties of modifed PVC and Cr2O3 nanocomposite, Trans. Electr. Electron. Mater., 22(2021), 317-327.