Fabrication of Lead Iodide Perovskite Solar Cells by Incorporating Cr-substituted and Pristine Ba2In2O5•(H2O)x as Additives

Document Type : Original Article

Authors

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P. O. Box: 3353-5111, Tehran, Iran.

Abstract

In this study, two inorganic additives with perovskite structure have been used as additives in fabrication of perovskite solar cells (PSCs). Ba2In2O5·(H2O)x and Ba2(In1.8Cr0.2)O5·(H2O)y was applied in perovskite precursor solution for synthesis of photo absorption layer in PCSs by a one-step solution method with solvent engineering technique. Cr-substituted and pristine Ba2In2O5·(H2O)x were prepared by solid-state and soft chemistry methods like the procedures in previous work, and utilized to improve the crystal structure and morphology of perovskite layer of PSCs. The morphology of the new perovskite layers was studied by FE-SEM, and XRD analysis. The results showed using 2 wt % of additives in precursor solution of fabricated PCSs increased the open-circuit voltage (Voc) of cells, also the power-conversion efficiency of the cells improved from 7.8 % to 9.7, and 9.3 % by using both additives respectively. Cr-substituted and pristine Ba2In2O5·(H2O)x could modify the coverage of perovskite film on the TiO2 layer and consequently improve the photovoltaic stability and performance of perovskite solar cells.

Keywords

Main Subjects


  1. S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance, J. Phys. Chem. Let., 5(2014), 1035-1039.
  2. G. E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energ Environ. Sci., 7(2014), 982-988.
  3. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors, Sci., 286(1999), 945-947.
  4. S. D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Sci., 342(2013), 341-344.
  5. I. m. JH, I.H. Jang, N. Pellet, M. Grätzel, N.G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells, Nat. Nanotechnol., 9(2014), 927.
  6. W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Sci., 347(2015), 522-526.
  7. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.L. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Mater., 13(2014), 897-903.
  8. T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, W. Huang, Additive engineering for highly efficient organic – inorganic halide perovskite solar cells : recent advances and perspectives, J. Mater. Chem. A., 5(2017), 12602-12652.
  9. M. P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Hydrogen storage in metal–organic frameworks, Chem. Rev., 112(2012), 782-835.
  10. Li. JR, J. Sculley, HC. Zhou, Metal a organic frameworks for separations, Chem. Rev., 112 (2012), 869-932.
  11. L. E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal organic framework materials as chemical sensors, Chem. Rev., 112(2012), 1105-1125.
  12. L. Ma, J.M. Falkowski, C. Abney, W. Lin, frameworks as a tunable platform for asymmetric catalysis, Nat. Chem., 2(2010), 838-846.
  13. J. Lee, OK. Farha, J. Roberts, KA. Scheidt, ST. Nguyen, JT. Hupp, Metal – organic frameworks issue Metal – organic framework materials as catalysts, Chem. Soc. Rev., 38(2009), 1450-1459.
  14. P. Mahata, G. Madras and S. Natarajan, Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds, J. Phys. Chem. B., 110(2006), 13759-13768.
  15. L. L Wen, F. Wang, J. Feng, K. L. Lv, C. G. Wang and D. F. Li, Structures, photoluminescence, and photocatalytic properties of six new metal-organic frameworks based on aromatic polycarboxylate acids and rigid imidazole-based synthons, Cryst. Growth. Des., 9(2009), 3581-3589.
  16. C. Wang, Z. Xie, K. E. deKrafft and W. Lin, Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis, J. Am. Chem. Soc., 133(2011), 13445–13454.
  17. C. Wang, Z. Xie, K.E. deKrafft and W. Lin, Light-harvesting cross-linked polymers for efficient heterogeneous photocatalysis, ACS Appl Mater Interfaces., 4(2012), 2288-2294.
  18. AV. Vinogradov, H. Zaake-Hertling, E. Hey-Hawkins, AV. Agafonov, GA. Seisenbaeva, VG. Kessler, VV. Vinogradov, The first depleted heterojunction TiO2–MOF-based solar cell, Chem. Comm., 1(2014), 14-17.
  19. D. Shen, A. Pang, Y. Li, J. Dou, M. Wei, Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic, Chem. Commun., 54 (2018), 1253-1256.
  20. TH. Chang, CW. Kung, HW. Chen, TY. Huang, SY. Kao, HC. Lu, MH. Lee, KM. Boopathi, CW. Chu, KC. Ho, Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals, Adv. Mater., 27(2015), 7229-7235.
  21. M. Li, D. Xia, Y. Yang, X. Du, G. Dong, A. Jiang, R. Fan, Doping of [In2(phen)3Cl6]CH3CN 2H2O indium‐based metal–organic framework into hole transport layer for Eenhancing perovskite solar cell efficiencies, Adv. Energy Mater., 8(2018), 1702052.
  22. M. Li, D. Xia, A. Jiang, X. Du, X. Fan, L. Qiu, P. Wang, R. Fan, Y. Yang, Enhanced crystallization and optimized morphology of perovskites through doping an indium based metal-organic assembly: achieving significant solar cell efficiency enhancements, Energy Technol., 7(2019), 1900027.
  23. M. S. Sowmehesaraee, M. Ranjbar, M. Abedi, S.A. Mozaffari, Fabrication of lead iodide perovskite solar cells by incorporating zirconium, indium and zinc metal-organic frameworks, Sol. Energy, 214 (2021), 174586.
  24. M. S. Sowmehesaraee, M. Ranjbar, M. Abedi, Incorporating MOF-235 in lead iodide perovskite solar cell and investigating its efficiency and stability, J. Mater. Sci.: Mater. Electron., 27(2021), 1-8.
  25. M. Seifpanah Sowmehsaraee, M. Ranjbar, M. Abedi, F. Rouhani, A. Morsali, The Effect of Zn (II) Containing MetalOrganic Frameworks on Perovskite Solar Cells, Prog. Color Colorants Coat., 14(2021), 259-267.
  26. E. Maleki, M Ranjbar ,S. A. Kahani, Investigating the effect of the delay time of dripping antisolvent on morphology and structure of the perovskite layer and its application in the hole-transport, Prog. Color Colorant Coat.,14(2021), 54-47.
  27. E. Kouhestanian, M. Ranjbar, A. Mozaffari, H. Salar amoli, Investigation of thickness effects on the performance of ZnO-based DSSC, Prog. Color Colorant Coat.,14(2021), 101-112.
  28. T. Y. Song Hak, S. Nikoee, M. Ranjbar, D. Ziegenbalg, M. Widenmeyer, A. Weidenkaff, Strongly affected photocatalytic CO2 reduction by CO2 adsorbed to the surface of Ba2 (In1. 8Cr0. 2) O5·(H2O) δ powders, Solid State Sci., 105(2020), 106212.
  29. X. Guo, C. Mccleese, C. Kolodziej, A. C. S. Samia, Y. Zhao, and C. Burda, intermediate phase in hybrid organic- inorganic, R. Soc. Chem., 45(2016) 3806-3813.
  30. W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner, T. Stergiopoulos, S. D. Stranks Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells, Nat. comm., 6(2015), 1-10.
  31. C. Y. Chang, C.Y. Chu, Y.C. Huang, C.W. Huang, S.Y. Chang, C.A. Chen, C.Y. Chao, Su, W.F, Tuning perovskite morphology by polymer additive for high efficiency solar cell, ACS Appl. Mater. Inter., 7(2015), 4955-4961.
  32. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra, Phys. Chem. Lett., 9(2018), 6814-6817.
  33. P.R. Jubu, F.K. Yam, V.M. Igba, Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data–a case study of β-Ga2O3, J. Solid State Chem., 290(2020), 121576.