Synthesizing and Characterizing the Hybrid Pigment Fe0.7Cr1.3O3 With High NIR Reflectance for Sustainable Energy Saving Applications

Document Type : Original Article

Authors

1 Department of Materials Engineering, Faculty of Engineering, Malayer University, P. O. box: 65741-84621, Malayer, Iran

2 Department of Nano Materials and Nano Coatings, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran

3 Department of Color physics, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran

Abstract

Today, a growing number of the world population faces a rise in the cost of living significantly increased energy costs. That is why Energy-saving has become a vital issue. One of the remarkable ways to reduce energy consumption is using cool pigments; therefore, research has been done to improve pigments' infrared reflection capability. In this paper, the role of particle morphology was investigated to boost the infrared reflection property of iron-chromium-based pigments. For this purpose, a series of inorganic pigments based on the Fe0.7Cr1.3O3 formula was prepared via a hydrothermal method. Surfactants altered the particles' morphology to improve the pigments' reflecting properties. According to the IR reflectance results, flaky particles exhibit an enhanced IR reflection, and they have significantly larger IR reflections than spherical particles. Furthermore, the results have revealed that silica coating leads to a meaningful improvement in the IR reflection property. It was found that the maximum near-infrared solar reflectance of the sample with 2.63 % succinic acid surfactant and silica coating was 52.23 % compared to that of Fe0.7Cr1.3O3, which was 25.36 %. 

Keywords

Main Subjects


  1. C. Chen, A. Han, M. Ye, J. Wang, X. Chen, A new thermal insulation ceramic pigment: Ce doped Y3Al5O12 compounds combined with high near-infrared reflectance and low thermal conductivity, Alloys Compd., 886(2021), 161257.
  2. W. Zhou et. al., Synthesis and characterization of novel yellow-green Al-doped Y3Fe5O12 nano-pigments with high NIR reflectance, J. Alloys Compd., 896(2021), 162883.
  3. M. Tian et. al., Near-infrared reflectance and thermal insulating performance of Mo-doped Bi2WO6 with 3D hierarchical flower-like structure as novel ceramics pigment, Ceram. Int., 46(2020), 12566-12573.
  4. G. Yang et al., Sodium tungsten bronze (NaxWO3)-doped near-infrared-shielding bulk glasses for energy-saving applications, J. Mater. Sci. Technol., 89(2021), 50-157.
  5. S. Jose, S. B. Narendranath, D. Joshy, N. V Sajith, M. R. P. Kurup, P. Periyat, Low-temperature synthesis of NIR reflecting bismuth-doped cerium oxide yellow nano-pigments, Mater. Lett., 233(2018), 82-85.
  6. R. Levinson, P. Berdahl, H. Akbari, Solar spectral optical properties of pigments-Part II: a survey of common colorants, Sol. Energy Mater. Sol. Cells, 89(2005), 351-389.
  7. S. D. Doli, D. J. Jovanovi, D.trbac, L. a anin Far, M. D. Drami anin, Improved coloristic properties and high NIR reflectance of environment-friendly yellow pigments based on bismuth vanadate, Ceram. Int., 44(2018), 22731-22737
  8. L. Yuan, A. Han, M. Ye, X. Chen, C. Ding, L. Yao, Synthesis and characterization of novel nontoxic BiFe1-xAlxO3/mica-titania pigments with high NIR reflectance, Ceram. Int., 43(2018), 16488-16494.
  9. W. Zhou et. al., High near-infrared reflectance orange pigments of Fe-doped La2W2O9: preparation, characteri-zation, and energy consumption simulation, ACS Sustainable Chem. Eng., 9(2021), 12385-12393.
  10. J. Wang, A. Han, M. Ye, C. Chen, X. Chen, X. Zhu, Thermal Insulation Performance of Novel Coated Fabrics Based on Fe-Doped BaSnO3 Near-Infrared Reflectance Pigments, ACS Sustainable Chem. Eng., 9(2021), 16328-16337.
  11. W. Zhou et. al., High near-infrared reflective Zn1–xAxWO4 pigments with various hues facilely fabricated by tuning doped transition metal ions (A=Co, Mn, and Fe), Inorg. Chem., 61(2022), 693-699.
  12. P. Jeevanandam, R. S. Mulukutla, M. Phillips, S. Chaudhuri, L. E. Erickson, K. J. Klabunde, Near-infrared reflectance properties of metal oxide nanoparticles, J. Phys. Chem. C, 111(2007), 1912-1918.
  13. N. Kiomarsipour, R. S. Razavi, K. Ghani, M. Kioumarsipour, Evaluation of shape and size effects on optical properties of ZnO pigment, Appl. Surf. Sci., 270(2013), 33-38.
  14. S. Ge et al., Self-assembled flower-like antimony trioxide microstructures with high infrared reflectance performance, J. Solid State Chem., 200(2013), 136-142.
  15. S. Soumya et al., Near IR reflectance characteristics of PMMA/ZnO nanocomposites for solar thermal control interface films, Sol. Energy Mater Sol. Cells., 125(2014), 102-112.
  16. T. Thongkanluang, T. Kittiauchawal, P. Limsuwan, Preparation and characterization of Cr2O3-TiO2-Al2O3-V2O5 green pigment, Ceram. Int., 37(2011), 543-548.
  17. T. Thongkanluang, P. Limsuwan, P. Rakkwamsuk, Preparation and application of high near-infrared reflective green pigment for ceramic tile roofs, Int. J. Appl. Ceram. Technol., 8(2011), 1451-1458.
  18. R. Levinson et al., Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials, Sol. Energy Mater. Sol. Cells, 91(2007), 304-314.
  19. V. C. Malshe, A. K. Bendiganavale, Infrared reflective inorganic pigments, Recent Patents Chem. Eng.,1(2008), 67-79.
  20. S. Sadeghi-Niaraki, B. Ghasemi, E. Ghasemi, M. Ghahari, Preparation of (Fe, Cr)2O3@TiO2 cool pigments for energy-saving applications, J. Alloys Compd.,779(2019), 367-379.
  21. J. Zou, T. Zhang, and X. He, Dark brown Cr doped CaTiO3 pigments with high NIR reflectance, Mater. Lett., 248(2019), 173-176.
  22. L. Liu, A. Han, M. Ye, W. Feng, The evaluation of the thermal performance of cool coatings colored with high near-infrared reflective nano-brown inorganic pigments: magnesium doped ZnFe2O4 compounds, Sol. Energy, 113(2015), 48-56.
  23. A. Han, Y. Zhou, M. Ye, S. Feng, H. Du, R. Yang, Near-infrared reflectance and thermal performance of Na2V6O16.xH2O nanoribbon as a novel cool brown pigment, Dye. Pigment., 123(2015), 242-247.
  24. K. J. Park, D. S. Seo, W. Y. Jang, J. K. Lee, Effect of surfactant on the morphology of silver nanoparticles, Solid State Phenomena, 124(2007), 1205-1208.
  25. S. Y. Moon, T. Kusunose, T. Sekino, CTAB-assisted synthesis of size-and shape-controlled gold nanoparticles in SDS aqueous solution, Mater. Lett., 63(2009), 2038-2040.
  26. A. R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nanocrystals, Small, 4(2008), 310-325.
  27. T. Fujii, S. Kawasaki, A. Suzuki, T. Adschiri, High-speed morphology control of boehmite nanoparticles by supercritical hydrothermal treatment with carboxylic acids, Cryst. Growth Des., 16(2016), 1996-2001.
  28. H. Siddiqui, M. S. Qureshi, F. Z. Haque, Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis, Optik, 127(2016), 2740-2747.
  29. Q. Gao, X. Wu, Y. Fan, Q. Meng, Color performance and near-infrared reflectance property of novel yellow pigment based on Fe2TiO5 nanorods decorated mica composites, Dye. Pigment., 146(2017), 537-542.
  30. H. J. Kim, H. J. Lee, D. S. Kim, Hollow TiO2 flake prepared from TiO2 coated glass flake for solar heat protection and their thermal performance, Mater. Des., 150(2018), 188-192.
  31. P. M. Shirage, A. K. Rana, Y. Kumar, S. Sen, S. G. Leonardi, G. Neri, Sr-and Ni-doping in ZnO nanorods synthesized by a simple wet chemical method as excellent materials for CO and CO2 gas sensing, RSC Adv., 6(2016), 82733-82742.
  32. J. Chandrappan, V. Khetan, M. Ward, M. Murray, G. Jose, Devitrification of ultrafast laser-plasma produced metastable glass layer, Sci. Mater., 131(2017), 37-41.
  33. M. Iacob et al., Iron-chromium oxide nanoparticles self-assembling into smectic mesophases, RSC Adv., 4(2014), 6293-6299.
  34. M. Ghahari et al., Synthesis of suitable SiO2 Nnano particles as the core in core-shell nanostructured materials, J. Nanosci. Nanotechnol.,11(2011), 5311-5317.
  35. Y. S. Li, J. S. Church, A. L. Woodhead, F. Moussa, Preparation and characterization of silica-coated iron oxide magnetic nanoparticles, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 76(2010), 484-489.
  36. A. Sood, V. Arora, J. Shah, R. K. Kotnala, T. K. Jain, Multifunctional gold-coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications, Mater. Sci. Eng. C, 80(2017), 274-281.
  37. V. Fang, J. V. Kennedy, J. Futter, J. Manning, A review of near-infrared reflectance properties of metal oxide nanostructures. GNS Science, 2013.
  38. S. Son, S. H. Hwang, C. Kim, J. Y. Yun, J. Jang, Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 5(2013), 4815-4820.
  39. T. Thongkanluang, N. Chirakanphaisarn, P. Limsuwan, Preparation of NIR reflective brown pigment, Procedia Eng., 32(2012), 895-901.
  40. M. Khajeh Aminian, T. Azizi, R. Dehghan, M. Hakimi, Synthesis and characterization of CoAl2O4 nano pigments by polyol method, Prog. Color. Color. Coatings, 10(2017), 231–-238.