Microwave-assisted Combustion Synthesis of (GdxY2-x) O3:Eu3+ Nanoparticles

Document Type : Original Article


1 Department of Semiconductor, Materials and Energy Research Center, P.O. Box: 31787-316, Karaj, Iran

2 Department of Inorganic Pigments and Glaze, Institute for Color Science and Technology (ICST), P.O. Box 16765-654, Tehran, Iran


(GdxY2-x)O3:Eu3+ nanoparticles were synthesized from stoichiometric metal nitrates mixture (oxidizer) and glycine (fuel) by microwave-assisted combustion method. (GdxY2-x)O3:Eu3+ nanoparticles were fully crystalized in solution combustion step by microwave irradiation. These nanoparticles were thermally treated at 300, 500, 700, 900, and 1100 °C for about 30 min to release the combustion-induced stresses. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray (EDX), and photoluminescence spectroscopy (PL) techniques. Based on the XRD spectra, the as-synthesized sample was crystalline and single-phase. The crystallinity of nanoparticles was further improved after additional thermal treatment. The main PL peaks intensity (PLI) at 612 and 590 nm (relating to 5D0-7F2 electric bipolar and 5D0-7F1 magnetic dipole transitions, respectively) were increased upon thermal treatment above 300 °C. The PLI was increased about twice of the as-synthesized sample upon thermal treatment at 1000 °C. The Chromaticity coordinates diagram of the emission were evaluated based on the 1931 CIE chromaticity diagram. TEM images confirmed the grain growth from ~25 nm to over 100 nm after thermal treatment. The substitution of Eu3+ instead of Y3+ or Gd3+ was also confirmed by EDX point analysis in (GdxY2-x)O3:Eu3+ structure. Crystallographic planes of the synthesized samples were investigated using SAED patterns. Crystallinity of samples with increasing the heat-treatment temperature was promoted. Also AFM images confirm the enhancement of particles size with increasing temperature.


Main Subjects

  1. D. Galanin, Luminescence of molecules and crystals, Cambridge International Sience Publishing, Cambridge, England, 1996.
  2. Ž. Andrić, R. Krsmanović, M. Mitrić, Z. Marković, B. Viana, M.D. Dramićanin, Properties of the (Y0.75Gd0.25)2O3:Eu3+ scintillating nanopowder, Acta Chim. Slov., 55(2008), 179–183.
  3. Li, J. G. Li, X. Li, X. Sun, Tb3+/Eu3+ codoping
    of Lu3+ stabilized Gd3Al5O12 for tunable photoluminescence via efficient energy transfer, J. Alloys Compd., 670(2016), 161–169.
  4. M. Yen, S. Shionoya, H. Yamamoto, Fundamentals of Phosphors, CRC Press, 2018.
  5. C. Roop, Luminescence and the Solid State,Volume 21, 2nd ed., Elsevier, 2004.
  6. Morkoç, Ü. Özgür, Zinc Oxide, Fundamentals, Materials and Device Technology, Wiley, 2008.
  7. Di Bartolo, V. Godberg, D. Pacheco, Luminescence of Inorganic Solids, Springer US, Boston, MA, 1978.
  8. R. Ronda, Luminescence, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007.
  9. K. Ghosh, A. Prakash, S. Datta, S. K. Roy, D. Basu, Effect of fuel characteristics on synthesis of calcium hydroxyapatite by solution combustion route, Bull. Mater. Sci., 33(2010), 7–16.
  10. Ashok, A. Kumar, R. Bhosale, M. A. Saleh Saad, F. AlMomani, F. Tarlochan, Study of ethanol dehydrogenation reaction mechanism for hydrogen production on combustion synthesized cobalt catalyst, Int. J. Hydrogen Energy., 42(2017), 23464-23473.
  11. Dutta, Q. Mohammad, S. S. Manoharan, Luminescent properties of Eu3+ /Y2O3 ultrafine powders prepared by rapid microwave-combustion route, J. Mater. Sci. Lett., 21(2002), 1077-1079.
  12. Vu, T. Kim Anh, G. C. Yi, W. Strek, Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis, J. Lumin., 122-123(2007), 776-779.
  13. Chen, Y. Yan, J. Liu, Y. Yin, H. Wen, J. Zao, D. Liu, H. Tian, C. Zhang, S. Li, Microwave induced solution combustion synthesis of nano-sized phosphors, J. Alloys Compd., 473(2009), 473.
  14. W. Wang, Y. M. Chang, H. C. Chang, S. H. Lin, L. C. L. Huang, X. L. Kong, M. W. Kang, Local structure dependence of the charge transfer band in nanocrystalline Y2O3:Eu3+, Chem. Phys. Lett., 405(2005), 314-317.
  15. Ekambaram, M. Maaza, Combustion synthesis and luminescent properties of Eu3+- activated cheap red phosphors, J. Alloys Compd., 395(2005), 132-134.
  16. C. Patil, M. S. Hegde, T. Rattan, S. T. Aruna, Chemistry of Nanocrystalline Oxide Materials, WORLD SCIENTIFIC, 2008.
  17. Rasouli, A.M. Arabi, High Speed Preparation of GdCaAl3O7:Eu Nano-Phosphors by Microwave-Assisted Combustion Approach, Prog. Color. Colorants. Coat., 3(2011), 110-117.
  18. Ahmadian, F. A. Hessari, A. Arabi, Preparation and characterization of Luminescent nanostructured Gd2O3-Y2O3:Eu synthesized by the solution combustion process, Ceram. Int., 45 (2019), 45-59.
  19. Sariket, S. Shyamal, P. Hajra, H. Mandal, A. Bera, A. Maity, S. Kundu, C. Bhattacharya, Temperature controlled fabrication of chemically synthesized cubic In2O3 crystallites for improved photoelectrochemical water oxidation, Mater. Chem. Phys., 201(2017), 7-17.
  20. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A., 32(1976), 751-767.
  21. Kraini, N. Bouguila, I. Halidou, A. Timoumi, S. Alaya, Properties of In2O3 films obtained by thermal oxidation of sprayed In2S3, Mater. Sci. Semicond. Process., 16(2013), 1388-1396.
  22. Som, S.K. Sharma, T. Shripathi, Influences of doping and annealing on the structural and photoluminescence properties of Y2O3 nanophosphors, J. Fluoresc., 23(2013), 439-450.
  23. N. Kayani, F. Saleemi, I. Batool, Effect of calcination temperature on the properties of ZnO nanoparticles, Appl. Phys. A Mater. Sci. Process., 119(2015), 713-720.
  24. Som, S.K. Sharma, T. Shripathi, Influences of doping and annealing on the structural and photoluminescence properties of Y2O3 nanophosphors, J. Fluoresc., 23(2013), 439-450.
  25. Som, A. Choubey, S.K. Sharma, Spectral and trapping parameters of Eu3+ in Gd2O2S nanophosphor, J. Exp. Nanosci., 10(2015), 350-370.
  26. Hari Krishna, B. M. Nagabhushana, H. Nagabhushana, R.P.S. Chakradhar, R. Sivaramakrishna, C. Shivakumara, T. Thomas, Auto-ignition based synthesis of Y2O3for photo- and thermo-luminescent applications, J. Alloys Compd., 585(2014), 129-137.
  27. Victory Devi, N. Rajmuhon Singh, Effect of annealing on the luminescence properties of YVO4:Dy3+ phosphor on co-doping Pb2+ ions, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 146(2015), 331-341.
  28. Zhang, J. Gu, G. Jia, Z. Liu, Effect of annealing on the spectroscopy performance of YVO4:Ce3+ single crystals, Opt. Mater. (Amst)., 39(2015), 178-181.
  29. C. Chien, Synthesis of Y2O3:Eu phosphors by bicontinuous cubic phase process, J. Cryst. Growth., 290(2006), 554-559.
  30. M. Goldys, K. Drozdowicz-Tomsia, S. Jinjun, D. Dosev, I. M. Kennedy, S. Yatsunenko, M. Godlewski, Optical characterization of Eu-doped and undoped Gd2O3 nanoparticles synthesized by the hydrogen flame pyrolysis method, J. Am. Chem. Soc., 128(2006), 14498-14505.
  31. Bao, H. Lai, Y. Yang, W. Xu, C. Tao, H. Zhang, H. Yang, YVO4:Eu3+ arrays with flower-like and rod-like shape fabricated by a hydrothermal method, J. Cryst. Growth., 310(2008), 4394-4399.
  32. Satoh, H. Najafov, Luminescence Properties From C2 Site Of C-Type Cubic Y2O3: Eu Whiskers, Adv. Technol. Mater. Process., 17(2005), 43-46.
  33. Alammar, J. Cybinska, P.S. Campbell, A.V. Mudring, Sonochemical synthesis of highly luminescent Ln2O3:Eu3+ (Y, La, Gd) nanocrystals, J. Lumin., 169(2016), 587-593.
  34. G. Abhilash Kumar, S. Hata, K. Ikeda, K. G. Gopchandran, Luminescence dynamics and concentration quenching in Gd2−xEuxO3 nanophosphor, Ceram. Int., 41(2015), 6037-6050.
  35. K. Tamrakar, K. Upadhyay, I. P. Sahu, D. P. Bisen, Tuning of photoluminescence emission properties of Eu3+ doped Gd2O3 by different excitations, Optik (Stuttg)., 135(2017, 281-289.
  36. Mančić, V. Lojpur, B.A. Marinković, M.D. Dramićanin, O. Milošević, Hydrothermal synthesis of nanostructured Y2O3 and (Y0.75Gd0.25)2O3 based phosphors, in: Opt. Mater. (Amst)., 37(2013), 1817–1823.
  37. Mohammadi, Y. Ganjkhanlou, A.B. Moghaddam, M. Kazemzad, F.A. Hessari, R. Dinarvand, Synthesis of nanocrystalline Y2O3:Eu phosphor through different chemical methods: studies on the chromaticity dependence and phase conversion, Micro Nano Lett, 7(2012), 515-525.
  38. G. A. Kumar, S. Hata, K. G. Gopchandran, Diethylene glycol mediated synthesis of Gd2O3:Eu 3+ nanophosphor and its Judd-Ofelt analysis, Ceram. Int., 39(2013), 9125-9136.
  39. P. Hedaoo Raikwar, V. B. Bhatkar, S. K. Omanwar, Combustion synthesis and photoluminescence in novel red emitting yttrium gadolinium pyrosilicate nanocrystalline phosphor, J. Alloys Compd., 672(2016), 653-659.
  40. C. Sun, Y. C. Ding, D. M. Sagar, P. Nagpal, Photon upconversion towards applications in energy conversion and bioimaging, Prog. Surf. Sci., 92(2017), 281-316.
  41. B. B. Khina, Combustion Synthesis of Advanced Materials, Nova Science Publishers, Inc. New York, 2010.