Electrical Conductivity and Surface Morphology of PVB Films Doped with Different Nanoparticles

Document Type : Original Article


1 Department of Chemistry, College of Science, Tikrit University, P. O. Box: 34001, Tikrit, Iraq

2 Mechanical Engineering Department, Engineering College, Al-Nahrain University, P. O. Box: 64040, Baghdad, Iraq

3 Department of Environmental Science, College of Renewable Energy and Environmental Science, Alkarkh University of Science, P. O. Box: 31020, Baghdad, Iraq

4 Faculty of Applied Sciences, University Teknology MARA, Shah Alam, P. O. Box: 40450, Selangor, Malaysia.

5 Department of Chemistry, College of Science, Al-Nahrain University, P. O. Box: 64021, Baghdad, Iraq


Multiple poly (vinyl butyral) (PVB) nanocomposites films embedded with Co3O4,CuO, NiO, TiO2, and Cr2O3 nanoparticles (NPs) were prepared using the casting method. Loading ratios of 0.001 wt.% of the nanoparticles were used in films preparation and the process was conducted at room temperature. The electrical properties of PVB nanocomposites films were analyzed at a frequency of 1-3 MHz. These properties included the dielectric constant (real and imaginary parts (Ɛ' and Ɛ'', respectively)), conductivity (ϬAC), loss factor (tan δ), surface energy loss function (SELF), and volume energy loss function (VELF). These variables showed a significant improvement once the films were filled with the NPs comparing with the blank PVB. Furthermore, a surface morphology examination for the PVB nanocomposites films was conducted using the field emission scanning electron microscopy (FESEM) and energy dispersive x-ray (EDX) spectroscopy. Overall, findings revealed that PVB nanocomposite films showed a higher conductivity compared to the PVB blank. Thus, this type of nanocomposite films could be utilized in photovoltaics, optical devices, and military apparatuses due to their extraordinary features, such as the radiation resistivity.


Main Subjects

  1. Shen, X. Lu, X. Bian and L. Shi, Preparation and hydrophilicity study of poly(vinyl butyral)-based ultrafiltration membranes, J. Membr. Sci., 265(2005), 74-84.
  2. Z. Lang, J. P. Shen, Y. X. Zhang, Y. H. Yu, Y. J. Guo, C. X. Liu, Preparation and characterizations of charged poly(vinyl butyral) hollow fiber ultrafiltration membranes with perfluorosulfonic acid as additive, J. Membr. Sci., 430(2013), 1-10.
  3. Hajian, M. R. Reisi, G. A. Koohmareh, A. R. Z. Jam, Preparation and characterization of Polyvinylbutyral/Graphene Nanocomposite, J. Polym. Res, 19(2012), 1-7.
  4. C. Hoepfner, M. R. Loos, S. H. Pezzin, Evaluation of thermomechanical properties of polyvinyl butyral nanocomposites reinforced with graphene nanoplatelets synthesized by in situ polymerization, J. Appl. Polym. Sci., 135(2018), 46157 (1-10).
  5. Wang, S. Guan, M. Li, J. Zheng, C. Xu, A novel hybrid quasi-solid polymer electrolyte based on porous PVB and modified PEG for electrochromic application, Org. Electron., 56(2018), 268-275.
  6. Pizzanelli, C. Forte, S. Bronco, T. Guazzini, C. Serraglini and L. Calucci, PVB/ATO Nanocomposites for Glass Coating Applications: Effects of Nanoparticles on the PVB Matrix, MDPI Coat., 9(2019), 247(2-16)
  7. M. L. Sonia, S. Anand, S. Blessi, S. Pauline, A. Manikandan, Effect of surfactants (PVB/EDTA/CTAB) assisted sol-gel synthesis, structural, magnetic and dielectric properties of NiFe2O4 nanoparticles, Ceram. Int., 44(2018) 1-40
  8. Hussain, G.A. El-Hiti, A. Ahmed, N. Altaee, E. Yousif, Photocatalytic Degradation of Polyhydroxy-butyrate Films Using Titanium Dioxide Nanoparticles as a Photocatalyst, Russ. J. Appl. Chem., 89(2016), 1536−1543
  9. M. Omer, E. Yousif, E.T. B. Al-Tikrity, D. S. Ahmed, A. A. Ali, R. N. Abed, A Detailed Examination of UV Radiation Effects on the Structural and Morphological Properties of Polyvinyl Butyral Films Containing Different Nanoparticles, Prog. Color Colorants Coat., 14 (2021), 209-219
  10. Ghazi, D.; El-Hiti, G. A.; Yousif, E.; Ahmed, D. S.; Alotaibi, M. H., The Effect of Ultraviolet Irradiation on the Physicochemical Properties of Poly(vinyl Chloride) Films Containing Organotin(IV) Complexes as Photostabilizers. Molecules, 23(2018), 254,1-15.
  11. K. Bajpai, J. Bajpai, & S. N. Soni, Preparation and characterization of electrically conductive composites of poly (vinyl alcohol)-g-poly(acrylic acid) hydrogels impregnated with polyaniline (PANI), EXPRESS Polym. Lett., 2(2008), 26-39
  12. M. H. Bukhari, S. Khan, M. Rehanullah, N. M. Ranjha, Synthesis and Characterization of Chemically cross-linked acrylic acid/gelatin hydrogels: effect of ph and composition on swelling and drug release, Inter. J. Poly. Scie., (2015), 1-15
  13. Nagaveena, C. K. Mahadevan, Preparation by a facile method and characterization of amorphous and crystalline nickel sulfide nanophases, J. All. Comp., 582(2014), 447-456
  14. I. S. Ramya, C. K. Mahadevan, Preparation and structural, optical, magnetic, and electrical characterization of Mn2+/Co2+/Cu2+doped hematite nanocrystals, J. Solid State Chem., 211(2014), 37-50
  15. Ni, K. Zhao, Dielectric analysis of chitosan gel beads suspensions: Influence of low crosslinking agent concentration on the dielectric behavior, J. Colloid Interface Sci., 312(2007), 256–264.
  16. S. Sangawar, R. J. Dhokne, A. U. Ubale, P. S. Chikhalikar, S. D. Meshram, Structural characteri-zation and thermally stimulated discharge conductivity (TSDC) study in polymer thin films, Bull. Mater. Sci., 30(2007), 163-166.
  17. P. Mondal, R. Aluguri, S. K. Ray, Dielectric and transport properties of carbon nanotube-CdS nanostructures embedded in polyvinyl alcohol matrix, J. Appl. Phys., 105(2009), 114317 (1-8).
  18. S. Hassanien, Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50-xSex thin films, J. All. Comp., 671(2016), 566-578.
  19. B. Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry, Opt. Commun., 284(2011), 807-812.
  20. E. Atyia, N. A. Hega, Optical spectroscopy and dispersion parameters of Ge15Se60X25(X = As or Sn) amorphous thin films, Eur. Phys. J. Appl. Phys., 63(2013), 10301(p1-p7).
  21. M. Abd-Elnaiema, S. Moustafaa, A. M. Abdelraheem, M. A. Abdel-Rahim, A.Z. Mahmoud, Effects of annealing on structural and optical properties of Ge20Se70Sn10 thin films for optoelectronic applications, J. Non-Cryst. Solids, 549(2020), 120353 (1-10).
  22. Sarkar, N. S. Das, K. K. Chattopadhyay, Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering, Solid State Sci., 33(2014), 58-66.
  23. E. Atyia, N. A. Hegab, Determination and analysis of optical constants for Ge15Se60Bi25 thin films, Physica B: Condens. Matter, 454 (2014) 189-196.
  24. Pourjavadi, G. R. Mahdavinia, Super absorbency pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels, Turk J. Chem., 30(2006), 595-608.
  25. P. Kumar, T. Sankarappa, S. Kumar, AC conductivity studies in rare earth ions doped vanadotellurite glasses, J. All. Comp., 464(2008) 393-398.
  26. Kumar, N. Khan, D. Kumar, Polyvinyl butyral (PVB), versetile template for designing nanocomposite/composite materials: a review, Gr. Chem. Tech. Lett., 2 (2016), 185-194.
  27. Niratiwongkorn, G. E. Luckachan, V. Mittal, Self-healing protective coatings of polyvinyl butyral/polypyrrole-carbon black composite on carbon steel, RSC adv., 6(2016), 43237-43249.
  28. B. Povea, W. A. Monal, J. V. C. Rodríguez, A. M. Pat, N. B. Rivero, C. P. Covas, Interpenetrated chitosan-poly (acrylic acid-Co-acrylamide) hydrogels. synthesis, characterization and sustained protein release studies, Mater. Scie. Appl., 2(2011), 509-520.
  29. Dey, D. Mohan, G. C. Dhal, R. Prasad, Copper based mixed oxide catalysts (CuMnCe, CuMnCo and CuCeZr) for the oxidation of CO at low temperature, Mater. Discov., 10(2017), 1-14.
  30. Dey, G. C. Dhal, D. Mohan, R. Prasad, Structural and catalytic properties of Fe and Ni doping on CuMnOx catalyst for CO oxidation, Adv. Compos. Hybrid Mater., 3(2020), 84-97.
  31. Dey, G. C. Dhal, Property and structure of various platinum catalysts for low-temperature carbon monoxide oxidations, Mater. Today Chem., 16(2020), 100228-1-100228-24.
  32. R. Divya, M. Meena, C. K. Mahadevan and C. M. Padma, Investigation on CuO Dispersed PVA Polymer Films, Int. J. Eng. Res. Appl., 4(2014), 1-7.