The Effect of Zn (II) Containing Metal-Organic Frameworks on Perovskite Solar Cells

Document Type : Original Article


1 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

2 Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran


In this study, we use metal-organic frameworks (MOFs), TMU-60 ([Zn (OBA)(L*). DMF]L*=5,6-di(pyridine-4-yl)-1,2,3,4 tetrahydropyrazine) (compound I), and TMU-60-Cd (compound II), with excellent conductivity as additives in perovskite solution. The presence of cadmium in the structure of TMU-60-Cd can significantly enhance the conductivity of the framework. These frameworks can transfer the electron between the structures. Therefore, the use of these frameworks in perovskite solar cells could have a positive effect on electron transfer. However due to the creation of a lot of voids during the formation of perovskite layer, the power-conversion efficiency (PCE) of resulting PCSs were weaker than the pristine PCS. The results revealed that using even small amounts of TMU-60, and TMU-60-Cd caused a significant reduction in PCE, and the short current densities (Jsc), while improving the stability of the perovskite film, and the device. The absorption, and morphology of the new perovskite layer was also studied by UV–Vis spectroscopy, FE-SEM, and XRD.


  1. M. Hosseinnezhad, M. Ghahari, H. Shaki, J. Movahedi, Investigation of DSSCs performance: the effect of 1,8-naphthalimide dyes and Na-doped TiO2, Prog. Color Colorants Coat., 13(2020), 177-185.
  2. J. Movahedi, M. Hosseinnezhad, H. Haratizadeh, N. Falah, Synthesis and investigation of photovoltaic properties of new organic dye in solar cells devices, Prog. Color Colorants Coat., 12(2019), 33-38..
  3. E. Maleki, M. Ranjbar, S. A. Kahani, The Effect of Antisolvent Dropping Delay Time on The Morphology and Structure of The Perovskite Layer in The Hole Transport Material Free Perovskite Solar Cells, Prog. Color Colorants Coat., 14(2021), 47-54.
  4. F. Haug, J. Yum, C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, J. Phys. Chem. Lett., 5(2014), 1035-1039.
  5. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Environmental Science Formamidinium lead trihalide : a broadly tunable perovskite for efficient planar heterojunction solar, Energy Environ. Sci.,7(2014), 982–988.
  6. A.C.R. Kagan, , D.B. Mitzi, C.D. Dimitrakopoulos, C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors, American Association., 286(2016), 945–947.
  7. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding, Science, 341(2014), 341-344.
  8. M. Gra, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, LETT,499 (2013), 316–320.
  9. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, U. Bach, Y. Cheng, L.Spiccia, Perovskite solar cells hot paper a fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells, Angew. Chemie - Int. Ed., 53(2014), 9898–9903.
  10. N.J. Jeon, J. Lee, J.H. Noh, M.K. Nazeeruddin, S. Il. Seok, Efficient inorganic − organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials, J. Am. Chem. Soc., 135(2013), 19087-19090.
  11. W. Nie, H. Tsai, R. Asadpour, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H. Wang, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347(2015), 522–526.
  12. P. Liang, C. Liao, C. Chueh, F. Zuo, S. T. Williams, X. Xin, J. Lin, A.K. Jen, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells, Adv. Mater., 26 (2014), 3748–3754.
  13. T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, W. Huang, Additive engineering for highly efficient organic – inorganic halide perovskite solar cells : recent advances and perspectives, J. Mater. Chem. A Mater., Energy Sustain., 100(2017) 1-51.
  14. H. Furukawa, K.E. Cordova, M.O. Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341(2013), 1230444.
  15. A. Etats-unis, Hybrid porous solids : past, present, Future, 34(2008), 191-214.
  16. I. Eryazici, C.D. Malliakas, B.G. Hauser, O.K. Farha, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities, Nchem., 2(2010), 944-948.
  17. Y. Huang, S.H. Ke, Hydrogen storage in metal-organic frameworks, Appl. Mech. Mater., 946(2013), 316-317.
  18. J. Li, J. Sculley, H. Zhou, Metal À Organic Frameworks for Separations, Chem. Rev., (2012), 869–932.
  19. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Duyne, J.T. Hupp, Metal organic framework materials as chemical sensors, Chem. Rev., 2(2012), 1105-1125.
  20. L. Ma, J.M. Falkowski, C. Abney, W. Lin, frameworks as a tunable platform for asymmetric catalysis, Nat. Chem., 2(2010), 838–846.
  21. J. Lee, O.K. Farha, J. Roberts, K.A.Scheidt, S.T. Nguyen, J. T. Hupp, Metal – organic frameworks issue Metal – organic framework materials as catalysts, Chem. Soc. Rev., 5 (2009), 1450-1459.
  22. P. Mahata, G. Madras, S. Natarajan, Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds, J. Phys. Chem. B., 110(2006), 13759–13768.
  23. L.L. Wen, F. Wang, J. Feng, K. Lv, C.G. Wang, D.F. Li, Structures, photoluminescence, and photocatalytic properties of six new metal-organic frameworks based on aromatic polycarboxylate acids and rigid imidazole-based synthons, Cryst. Growth Des., 9(2009), 3581–3589.
  24. C. Wang, Z. Xie, K.E. Dekrafft, W. Lin, Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis, J. Am. Chem. Soc., 133(2011), 13445–13454.
  25. C. Wang, Z. Xie, K.E. Dekrafft, W. Lin, Light-harvesting cross-linked polymers for efficient heterogeneous photocatalysis, ACS Appl. Mater. Interfaces., 4(2012), 2288-2294.
  26. C.R. Wade, M. Li, M. Dinca, Facile deposition of multicolored electrochromic Metal-organic framework thin films, Angew. Chem. Int. Ed., 50(2013), 13377-13381.
  27. C. Kung, T.C. Wang, J.E. Mondloch, D. Fairen-jimenez, D.M. Gardner, W. Bury, J.M. Klingsporn, J.C. Barnes, R. Duyne, J.F. Stoddart, M.R. Wasielewski, O.K. Farha, J.T. Hupp, Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism, Angew. Chem. Int. Ed., 50(2013), 13377-13381.
  28. A. V. Vinogradov, H. Zaake-hertling, E. Hey-hawkins, V. V. Vinogradov, The first depleted heterojunction TiO2–MOF-based solar cell, Chem. Commun.,1(2014), 14–17.
  29. T.H. Chang, C.W. Kung, H.W. Chen, T.Y. Huang, S.Y. Kao, H.C. Lu, M.H. Lee, K.M. Boopathi, C.W. Chu, K.C. Ho, Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals, Adv. Mater., 27(2015), 7229–7235.
  30. D. Shen, A. Pang, Y. Li, J. Dou, M. Wei, , Metal – organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic, Chem. Commun.,54(2018), 1253–1256.
  31. M. Li, D. Xia, Y. Yang, X. Du, G. Dong, A. Jiang, R. Fan., Doping of [In2(phen)3Cl6]CH3CN.2H2O indium-based metal-organic framework into hole transport layer for enhancing perovskite solar cell efficiencies, Adv. Mater., 27(2018), 7229-7235.
  32. M. Li, D. Xia, A. Jiang, X. Du, X. Fan, L. Qiu, P. Wang, R. Fan, Y. Yang., Enhanced crystallization and optimized morphology of perovskites through doping an indium based metal–organic assembly: achieving significant solar cell efficiency enhancements, Energy Technol., 7(2019), 1900027.
  33. F. Rouhani, F. Rafizadeh-Masuleh, A. Morsali, Highly electroconductive Metal-organic Framework: Tunable by metal ion sorption quantity, J. Am. Chem. Soc., 141(2019), 11173-11182.
  34. B. Mitzi, B. David, Templating and structural engineering in organic–inorganic perovskites, J. Chem. Soc., Dalton Trans., 1(2001), 1-12.
  35. W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Ho, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, H.J. Snaith, Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells, Nat. Commun., 1(2015), 1-10.