Tri-functional Bio-friendly Cross-linker for UV-Curable Coatings: Synthesis and Study of Viscoelastic Properties

Document Type : Original Article

Authors

Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.

Abstract

Protection of the environment and keeping it from contaminants are critical issues. Polymers and oil-based plastics are unrenewable and entail a wide range of environmental pollution due to the long degradation. This study aims to synthesize bio-based coatings using natural substances, and evaluate their viscoelastic properties. Accordingly, first, UV-curable tri-functional castor oil-based waterborne urethane acrylate as a bio-friendly cross-linker was synthesized. Next, different weight percentages of the synthesized cross-linker were added to the UV-curable urethane acrylate resin, followed by UV radiation exposure to prepare, different flexible composite coatings. FT-IR spectroscopy was used to examine the progress of the cross-linker synthesis. The particle size analysis confirmed the stability and homogeneous distribution of the cross-linker particles in the emulsion. By DMTA analysis, viscoelastic characteristics of the films were studied. As a result, adding specific weight percentages of cross-linkers to the polymer matrix caused an increase in storage modulus and improvement of Tg of the coatings. The cross-link density of the film coatings was estimated from DMTA. The more weight percent of the cross-linker, the more is the cross-link density.

Keywords


  1. X. G. Dang, C. H. Yuan, H. Z. Shan, An eco-friendly material based on graft copolymer of gelatin extracted from leather solid waste for potential application in chemical sand-fixation, J. Clean. Prod., 188(2018), 416-424.
  2. M. A. R. Meier, J. O. Metzgerb, U. S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev., 36(2007), 1788-1802.
  3. S. Chen, C. Ma, G. Zhang, Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling, Prog .Org. Coat., 104(2017), 58-63.
  4. S. Oprea, P. Gradinariu, V. Oprea, Properties and fungal biodegradation of the different cellulose derivatives structure included into castor oil-based polyurethane composites, J. Compos. Mater., 53(2019), 3535-3548.
  5. S. S. Panda, S. K. Samal, S. Mohanty, and et al, Preparation, characterization, and properties of castor oil-based flexible polyurethane/Cloisite 30B nanocomposites foam, J. Compos. Mater., 52(2018), 531-542.
  6. A. Madhi, B. Shirkavand Hadavand, A. Amoozadeh, Synthesis, characterization and study on thermal stability, mechanical properties and thermal conductivity of UV-curable urethane acrylate Clay (MMT) nanocomposites, J. Appl. Chem., 12(2018), 91-98.
  7. Z. Hesari, B. Shirkavand Hadavand, M. Mahmoodi Hashemi, Fabrication and study of structural, optical and electrical properties of UV curable conductive polyurethane acrylate films containing polyaniline- Co3O4 nanocomposites, Prog. Color Colorants Coat., 9(2016), 41-52.
  8. A. Madhi, B. Shirkavand Hadavand, A. Amoozadeh, Thermal conductivity and viscoelastic properties of UV-curable urethane acrylate reinforced with modified Al2O3 nanoparticles, Prog. Color Colorants Coat., 10(2017), 193-204.
  9. S. Kasetaite, J. Jolita Ostrauskaite, V, Grazuleviciene, and et al, Biodegradable glycerol-based polymeric composites filled with industrial waste materials, J, Compos, Mater., 51(2017), 4029-4039.
  10. A. Corma, I. Sara, V. Alexandra, Chemical routes for the transformation of biomass into chemicals, Chem. Rev., 107(2007), 2411-2502.
  11. T. Gurunathan, R. Arukula, High performance polyurethane dispersion synthesized from plant oil renewable resources: a challenge in the green materials, Polym. Degrad. Stab. 150(2018), 122-132.
  12. M. A. Mosiewicki, G. A. Dell'Arciprete, M.I. Aranguren, and et al, Polyurethane foams obtained from castor oil-based polyol and filled with wood flour, J. Compos. Mater., 43(2009), 3057-3072.
  13. T. Gurunathan, S. Mohanty, S. K. Nayak, Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization, Prog. Org. Coat., 80(2015), 39-48.
  14. S. S. Panda, B. P. Panda, S. Mohanty S, and et al, Synthesis and properties of castor oil-based waterborne polyurethane Cloisite 30B nanocomposite coatings, J. Coat. Technol. Res., 14(2017), 377-394.
  15. M. A. Alaa, K. Yusoh, S. F. Hasany, Synthesis and characterization of polyurethane–organoclay nanocomposites based on renewable castor oil polyols, Polym. Bullet. 72(2015), 1-17.
  16. F. Mohtadizadeh, M. J. Zohuriaan-Mehr, B. Shirkavand Hadavand, and et al, Tetra-functional epoxy-acrylate as crosslinker for UV curable resins: Synthesis, spectral, and thermo-mechanical studies, Prog. Org. Coat., 89(2015), 231-239.
  17. S. D. Reinitz, E. M. Carlson, R. A. C. Levine, and et al, Dynamical mechanical analysis as an assay of cross-link density of orthopaedic ultrahigh molecular weight polyethylene, Polym. Test., 45(2015), 174-178.
  18. W. Stark, M. Jaunich, Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA, Polym. Test., 30(2011), 236-242.
  19. W. Stark, Investigation of the curing behaviour of carbon fibre epoxy prepreg by Dynamic Mechanical Analysis DMA, Polym. Test., 32(2013), 231-239.
  20. H. Farzad, F. Najafi, M. Bengisu, and et al, Synthesis and characterization of aliphatic tri-functional oligomeric urethane methacrylate used for UV-curable aluminum pigmented coatings., J. Macromol. Sci. Part A., 50(2013), 504-512.
  21. J. Mohammadian, B. Shirkavand Hadavand, S. Khajenoori, Synthesis and Investigation on Viscoelastic Properties of Urethane Acrylate-Polyaniline, Prog. Color Colorants Coat., 11(2018), 241-252.
  22. B. Shirkavand Hadavand, F. Najafi, M. R. Saeb, and et al, Hyperbranched polyesters urethane acrylate resin: A study on synthesis parameters and viscoelastic properties.,High. Perform. Polym., 29(2017), 651-662.
  23. A. Madhi, B. Sirkavand Hadavand, Eco-friendly castor oil-based UV-curable urethane acrylate zinc oxide nanocomposites: Synthesis and viscoelastic behavior, J. Compos. Mater. 54(2019), 101-110.
  24. F. Najafi, E. Bakhshandeh, B. Shirkavand Hadavand, and et al, Toward UV-curable urethane acrylate/silica hybrid coatings: Introducing urethane methacrylate trimethoxysilane (UAMS) as organic–inorganic coupling agent, Prog. Org. Coat., 77(2014), 1957-1965.
  25. A. Majeed, E. Yousif, G. A. Elā€Hiti, D. S. Ahmed, A. A. Ahmed, Stabilization of Poly (vinyl chloride) containing captopril tin complexes against degradation upon exposure to ultraviolet light, J. Vinyl. Addit. Technol., 2020. DOI: 10.1002/vnl.21774.
  26. V. Mishra, I. Mohanty, M.R. Patel, and et al, Development of Green Waterborne UV-Curable Castor Oil-Based Urethane Acrylate Coatings: Preparation and Property Analysis, Int. J. Polym. Anal. Char., 20(2015), 504-513.
  27. H. Liu, M. Dong, W. Huang, and et al, Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing, J. Mater. Chem. C., 5(2017), 73-83.
  28. F. Najafi, B. Akbari, F. Najafi, and et al, Characterization of the physical–mechanical properties of dental resin composites reinforced with novel micro-nano hybrid silica particles: An optimization study, Macromol. Sci. Part A., 55(2018), 736-746.
  29. B. Ghobadi Jola, B. Shirkavand Hadavand, K. Didehban, A. Mirshokraie, The Effect of Molecular Weight of Polyethylene Glycol and Nanoclay Percentages on the Rheological Behavior of Dispersing Anionic Polyurethane Nanocomposites, J. Inorg. Organomet. Polym., 28(2018), 92–101.
  30. A. Madhi, B. Shirkavand Hadavand, A. Amoozadeh, UV-curable urethane acrylate zirconium oxide nanocomposites. Synthesis, study on viscoelastic properties and thermal behavior, J. Compos. Mater., 52(2018), 2973-2982.
  31. B. Shirkavand Hadavand, M. Pishvaei, M. Hosseininiasari, The role of nanoclay on surface roughness and characteristics of epoxy polysulfide nanocomposite, Prog. Org. Coat., 131(2019), 60-66.
  32. S. K. Samal, S. Mohanty, S. K. Nayak, Polypropylene bamboo/glass fiber hybrid composites: Fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior, J. Reinf. Plast. Compos., 28(2009), 2729-2748.
  33. B. Shirkavand Hadavand, H. Hosseini, Investigation of viscoelastic properties and thermal behavior of photocurable epoxy acrylate nanocomposites, J. Sci. Eng. Compos. Mater. 24(2017), 691-697.
  34. L. U. Devi, S. S. Bhagawan, S. Thomas, Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites, Polym. Compos., 31(2010), 956-965.
  35. H. L. Ornaghi, S. H. P. da Silva, A. J. Zattera, Hybridization effect on the mechanical and dynamic mechanical properties of curaua composites, Mater. Sci. Eng A., 528(2011), 7285-7289.
  36. A. Hassan, N. A. Rahman, R. Yahya, Extrusion and injection-molding of glass fiber/ MAPP/polypropylene: Effect of coupling agent on DSC, DMA and mechanical properties, J. Reinf. Plast. Compos., 30(2011), 1223-1232.
  37. L. Song , Q. Ye, X. Ge, and et al, Synthesis and evaluation of novel dental monomer with branched carboxyl acid group, J. Biomed. Mater. Res. Part B., 102(2014), 1473-1484.
  38. V. V. Krongauz, Diffusion in polymers on crosslink density Eringappoarch mechanism, J. Them. Ana. Calorim., 102(2010), 435-445.
  39. A. Madhi, B. Shirkavand Hadavand, Bio-based UV-curable urethane acrylate graphene nanocomposites: synthesis and properties, SN Appl Sci., 2020. DOI: 10.1007/s42452-020-2527-4.