This paper employs the electrochemical current noise (ECN) and electrochemical impedance spectroscopy (EIS) techniques to better evaluate the dissolved O2 concentration on the passive oxide film of AA6162 Al alloy. The ECN measurements were done on the asymmetrical electrodes with different sizes (2-200 mm2) after 5 min from immersion in each of 0.4% NaCl, 0.4% NaCl + 0.1% NaNO2 and 3.5% NaCl solutions containing different O2 concentrations (5-25 ppm). EIS measurements were used to calculate the thickness of the passive oxide film. In dilute NaCl solution, the dissolved oxygen played an active role with an increase in oxygen concentration up to 15 ppm, while with further increase of oxygen concentration it acted as a passive factor to decrease the corrosion activity. With increasing the concentration of oxygen from 5 to 25 ppm, in the concentrated NaCl solution, the oxide film thickness decreased as an evidence of the active role of the oxygen reduction reaction. The behavior of nitrite-containing NaCl solution was in accordance with the property of nitrite ion which assists the formation of the passive film according to the adsorption theory.
K. I. Aly. M. G. Mohamed. O. Younis. M. H. Mahross. M. Abdel-Hakim, M. M. Sayed, Salicylaldehyde azine-functionalized polybenzoxazine: synthesis, characterization, and its nanocomposites as coatings for inhibiting the mild steel corrosion, Prog. Org. Coat., 138(2020), 105385.
P. C. Pistorius, Design Aspects of Electrochemical Noise Measurements for uncoated metals: electrode size and sampling rate, CORROSION, 53(1997), 273-283.
M. Leban. A. Legat, V. Dolecek, Electrochemical noise during non-stationary corrosion processes, Mater. Corros., 52(2001), 418-425.
R. A. Cottis, Interpretation of electrochemical noise data, Corrosion, 57(2001), 265-285.
S. Ritter. T. Dorsch, R. Kilian, Using thionates for noise Experiments –a reasonable combination?, Mater. Corros., 55(2004), 781-786.
X. F. Liu. H. G. Wang, H. C. Gu, Fractal characteristic analysis of electrochemical noise with wavelet transform, Corros. Sci., 48(2006), 1337-1367.
H. S. Klapper, J. Goellner, Electrochemical noise from oxygen reduction on stainless steel surfaces, Corros. Sci., 51(2009), 144-150.
H. S. Klapper. J. Goellner, A. Heyn, The influence of the cathodic process on the interpretation of electrochemical noise signals arising from pitting corrosion of stainless steels, Corros. Sci., 52(2010), 1362-1372.
M. Shahidi. A. H. Jafari, S. M. A. Hosseini, Comparison of symmetrical and asymmetrical cells by statistical and wavelet analysis of electrochemical noise data, Corrosion, 68(2012), 1003-1014.
D.H. Xia. S. Song. Y. Behnamian. W. Hu. Y. F. Cheng. J.L. Luo, F. Huet, Review-Electrochemical Noise Applied in Corrosion Science: Theoretical and mathematical models towards quantitative analysis, J. Electrochem. Soc., 167(2020), 081507.
H. Arabzadeh. M. Shahidi Zandi, M. M. Foroughi, Interpretation of electrochemical noise signals arising from symmetrical and asymmetrical electrodes made of polypyrrole coated mild steel, Prog. Color Colorants Coat., 12(2019), 25-32.
B. Ramezanzadeh. M. Mehdipour, S. Y. Arman, Application of electrochemical noise to investigate corrosion inhibition properties of some azole compounds on aluminum in 0.25 M HCl, Prog. Color Colorants Coat., 8(2015), 69-86.
K. Darowicki, A. Zielinski, Joint time–frequency analysis of electrochemical noise, J. Electroanal. Chem., 504(2001), 201-207.
A. Aballe. M. Bethencourt. F. J. Botana, M. Marcos, Using wavelets transform in the analysis of electrochemical noise data, Electrochim. Acta, 44(1999), 4805-4816.
A. Aballe. M. Bethencourt. F. J. Botana, M. Marcos, Wavelet transform-based analysis for electrochemical noise, Electrochem. Commun., 1(1999), 266-270.
X. F. Liu. H. G. Wang. S. J. Huang, H. C. Gu, Analysis of elctrochemical noise with wavelet transform, CORROSION, 57(2001), 843-852.
M. Attarchi. M. S. Roshan. S. Norouzi. S. K. Sadrnezhaad, A. Jafari, Electrochemical potential noise analysis of Cu–BTA system using wavelet transformation, J. Electroanal. Chem., 633(2009), 240-245.
M. T. Smith, D. D. Macdonald, Wavelet analysis of electrochemical noise data, Corrosion, 65(2009), 438-448.
M. Shahidi. S. M. A. Hosseini, A. H. Jafari, Comparison between ED and SDPS plots as the results of wavelet transform for analyzing electrochemical noise data, Electrochim. Acta, 56(2011), 9986-9997.
D. H. Xia. S. Z. Song, Y. Behnamian, Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms, Corros. Eng. Sci. Techn., 51(2016), 527-544.
D.-H. Xia, Y. Behnamian, Electrochemical noise: a review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 51(2015), 593-601.
Z. Szklarska-Smialowska, Pitting corrosion of aluminum, Corros. Sci., 41(1999), 1743-1767.
W. Kuang. X. Wu, E.H. Han, Influence of dissolved oxygen concentration on the oxide film formed on Alloy 690 in high temperature water, Corros. Sci., 69(2013), 197-204.
M. Shahidi. R. F. Moghaddam. M. R. Gholamhosseinzadeh, S. M. A. Hosseini, Investigation of the cathodic process influence on the electrochemical noise signals arising from pitting corrosion of Al alloys using wavelet analysis, J. Electroanal. Chem., 693(2013), 114-121.
H. Ezuber. A. El-Houd, F. El-Shawesh, A study on the corrosion behavior of aluminum alloys in seawater, Mater. Design, 29(2008), 801-805.
F. Ozturk. A. Sisman. S. Toros. S. Kilic, R. C. Picu, Influence of aging treatment on mechanical properties of 6061 aluminum alloy, Mater. Des., 31(2010), 972-975.
R. W. Revie, H. H. Uhlig, Corrosion and corrosion control: an introduction to corrosion science and engineering, John Wiley & Sons, New Jersey, 2008.
K. I. Aly. O. Younis. M. H. Mahross. E. A. Orabi. M. Abdel-Hakim. O. Tsutsumi. M. G. Mohamed, M. M. Sayed, Conducting copolymers nanocomposite coatings with aggregation-controlled luminescence and efficient corrosion inhibition properties, Prog. Org. Coat., 135(2019), 525-535.
J. Hitzig. K. Juttner. W. J. Lorenz, W. Paatsch, AC-Impedance measurements on porous aluminium oxide films, Corros. Sci., 24(1984), 945-952.
Mohammadi, M. , Shahidi-Zandi, M. and Foroughi, M. (2021). Influence of the Dissolved Oxygen Concentration on the Passive Oxide Film of Al Alloy in Different Media. Progress in Color, Colorants and Coatings, 14(3), 187-197. doi: 10.30509/pccc.2021.81712
MLA
Mohammadi, M. , , Shahidi-Zandi, M. , and Foroughi, M. . "Influence of the Dissolved Oxygen Concentration on the Passive Oxide Film of Al Alloy in Different Media", Progress in Color, Colorants and Coatings, 14, 3, 2021, 187-197. doi: 10.30509/pccc.2021.81712
HARVARD
Mohammadi, M., Shahidi-Zandi, M., Foroughi, M. (2021). 'Influence of the Dissolved Oxygen Concentration on the Passive Oxide Film of Al Alloy in Different Media', Progress in Color, Colorants and Coatings, 14(3), pp. 187-197. doi: 10.30509/pccc.2021.81712
CHICAGO
M. Mohammadi , M. Shahidi-Zandi and M. Foroughi, "Influence of the Dissolved Oxygen Concentration on the Passive Oxide Film of Al Alloy in Different Media," Progress in Color, Colorants and Coatings, 14 3 (2021): 187-197, doi: 10.30509/pccc.2021.81712
VANCOUVER
Mohammadi, M., Shahidi-Zandi, M., Foroughi, M. Influence of the Dissolved Oxygen Concentration on the Passive Oxide Film of Al Alloy in Different Media. Progress in Color, Colorants and Coatings, 2021; 14(3): 187-197. doi: 10.30509/pccc.2021.81712