Effect of Three Operating Variables on Degradation of Direct Blue 199 by TiO2 Immobilized into a Polymer surface: Response Surface Methodology

Document Type : Original Article

Authors

1 Laboratory of Organic Synthesis, Extraction and Valorization, Department of Chemistry, Ain Chock Faculty of Sciences, Hassan II University, P.O. Box: 5366, Mâarif, Casablanca, Morocco

2 Environmental Engineering Laboratory, Hassania School of Public Works, P. O. Box: 8108, Oasis, Casablanca, Marocco

Abstract

This work aims to study the photodegradation of Direct Blue 199 dye. The investigation was performed using titanium dioxide-based films immobilized on a polymethyl methacrylate (PMMA) polymer, by a promising low coast technique. The characterization of the films by X-ray diffractometry, fourier transform infrared spectroscopy, scanning electron microscopy, UV-Visible transmittance, and fluorescence spectroscopy revealed the deposition of 13.76% by mass of TiO2 with excellent adhesion to the polymer surface. However, the evaluation of the influence of three parameters (pH, initial TiO2 concentration, H2O2 concentration) on the efficiency of color removal in aqueous solution under UV irradiation on suspended semiconductors, have been performed using the response surface methodology based on experimental design. We therefore found the following optimum conditions: pH= 8, [TiO2] = 1369.29 mg.L-1, [H2O2] = 40 mmol.L-1 which led to a discoloration efficiency of 85 %. The results were then used to evaluate the performance of the prepared photocatalyst films, which showed a strong capacity to absorb the dye due to the appearance of pores relative to the preparation procedure, in addition to their catalytic effect. The kinetic of decolorization under optimum conditions was well fitted to the pseudo-first-order kinetic model

Keywords


  1. P. Sirajudheen, S. Meenakshi, Facile synthesis of chitosan-La3+ graphite composite and its influence in photocatalytic degradation of methylene blue, Int. J. Biol. Macromol., 133(2019), 253-261.
  2. A. Khan, M. A. Aziz, M. Qamar, Simple and enhanced thermal immobilization of gold nanoparticles on TiO2 coated ITO electrodes for photoelectrochemical water oxidation, Chem. Sel., 2(2017), 7678-7683.
  3. T. B. Veras, A. Luiz Ribeiro de Paiva, M. M. M. B. Duarte, D. C. Napoleão, J. J. da Silva Pereira Cabral, Analysis of the presence of anti-inflammatories drugs in surface water: A case study in Beberibe river-PE, Brazil., Chemosphere, 222(2019), 961-969.
  4. M. O. Omorogie, A. E. Ofomaja, Clean technology and response surface approach for the photodegradation of selected antibiotics by catalyst supported on pine activated carbon, Clean Technol. Environ. Policy, 19(2017), 2191-2213.
  5. J. He, Y. Zhang, Y. Guo, G. Rhodes, J. Yeom, H. Li, Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight : Kinetics, influencing factors, and mechanisms, Environ. Int., 132(2019), 105-111.
  6. S. Klementova, D. Kahoun, L. Doubkova, K. Frejlachova, M. Dusakova, M. Zlamal, Catalytic photodegradation of pharmaceuticals-homogeneous and heterogeneous photocatalysis, Photochem. Photobiol. Sci., 16(2017), 67-71.
  7. B. Vakili, B. Shahmoradi, A. Maleki, M. Safari, J. Yang, R. R. Pawar, Lee, Synthesis of immobilized cerium doped ZnO nanoparticles through the mild hydrothermal approach and their application in the photodegradation of synthetic wastewater, J. Mol. Liq., 280(2019), 230-237.
  8. A. J. Jafari, R. R. Kalantari, M. Kermani, M. H. Firooz, Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight, Chem. Pap., 73(2019), 635-644.
  9. M. Ait Himi, S. El Ghachtouli, A. Amarray, Z. Zaroual, P. Bonnaillie, M. Azzi, Removal of azo dye Calcon using polyaniline films electrodeposited on SnO2 substrate, Phys. Chem. Res., 8(2020), 111-124.
  10. S. N. B. Saiful Amran, V. Wongso, N. S. Abdul Halim, M. K. Husni, N. S. Sambudi, M. D. H. Wirzal, Immobilized carbon-doped TiO2 in polyamide fibers for the degradation of methylene blue, J. Asian Ceram. Soc., 7(2019), 321-330.
  11. Y. Lin, C. Weng, F. Chen, Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation, Chem. Eng. J., 248(2014), 175-183.
  12. O. Ounas, A. A. El Foulani, B. Lekhlif, J. Jamal-Eddine, Immobilization of TiO2 into a poly methyl methacrylate (PMMA) as hybrid film for photocatalytic degradation of methylene blue, Mater. Today Proc., 22(2020), 35-40.
  13. S. M. Hashemi, K. Badii, S. Abdolreza, Study of immobilization of nano-TiO2 for environmental aspects on glass by different resin families, Prog. Color. Colorants Coat., 4(2010), 1-6.
  14. S. K. Kassahun, Z. Kiflie, D. W. Shin, S. S. Park, W. Y. Jung, Y. R. Chung, Facile low temperature immobilization of N-doped TiO2 prepared by sol–gel method, J. Sol-Gel Sci. Technol., 83(2017), 698-707.
  15. M. H. Alhaji, K. Sanaullah, A. Khan, A. Hamza, A. Muhammad, M. S. Ishola, A. R. H. Rigit, S. A. Bhawani, Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater- A review, Int. J. Environ. Sci. Technol., 14(2017), 2039-2052.
  16. K. (Guy) Vibulyaseak, S. (Benz) Deepracha, M. Ogawa, Immobilization of titanium dioxide in mesoporous silicas: Structural design and characterization, J. Solid State Chem., 270(2019), 162-172.
  17. A. M. A. Inamuddin, Gaurav Sharma, Amit Kumar, Eric Lichtfouse, Nanophotocatalysis and Environmental Applications, Springer, Cham, Switzerland, 2019, 49-82.
  18. N. Becheikh, Modélisation et simulation numérique de la dégradation photocatalytique d’un polluant modèle dans un microréacteur, PhD thesis, Lorraine university, France, 2012.
  19. S. Teixeira, H. Mora, L. M. Blasse, P. M. Martins, S. A. C. Carabineiro, S. Lanceros-Méndez, K. Kühn, G. Cuniberti, Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles, J. Photochem. Photobiol. A Chem., 345(2017), 27-35.
  20. A. H. Jawad, A. F. M. Alkarkhi, N. S. A. Mubarak, Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation: optimization using response surface methodology (RSM), Desalin. Water Treat., 56(2015), 161-172.
  21. V. A. Sakkas, M. A. Islam, C. Stalikas, T. A. Albanis, Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation, J. Hazard. Mater., 175(2010), 33-44.
  22. P. Pascariu, C. Cojocaru, N. Olaru, A. Airinei, Photocatalytic activity of ZnO–SnO2 ceramic nanofibers for RhB Dye degradation: Experimental design, modeling, and process optimization, Phys. Status Solidi Basic Res., 256(2019), 1-8.
  23. R. Leardi, Experimental design in chemistry: A tutorial, Anal. Chim. Acta, 652(2009), 161-172.
  24. P. Chawla, S. K. Sharma, A. P. Toor, Optimization and modeling of UV-TiO2 mediated photocatalytic degradation of golden yellow dye through response surface methodology, Chem. Eng. Commun., 206(2019), 1123-1138.
  25. A. Zuorro, M. Fidaleo, R. Lavecchia, Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H2O2 process, J. Environ. Manage., 127(2013), 28-35.
  26. C. Xu, G. P. Rangaiah, X. S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: Experimental and modeling study, Ind. Eng. Chem. Res., 53(2014), 14641-14649.
  27. A. Toolabi, M. Malakootian, M. T. Ghaneian, A. Esrafili, M. H. Ehrampoush, M. AskarShahi, M. Tabatabaei, M. Khatami, Optimizing the photocatalytic process of removing diazinon pesticide from aqueous solutions and effluent toxicity assessment via a response surface methodology approach, Rend. Lincei, 30(2019), 155-165.
  28. M. Rahimdokht, E. Pajootan, M. Ranjbar-Mohammadi, Titania/gum tragacanth nanohydrogel for methylene blue dye removal from textile wastewater using response surface methodology, Polym. Int., 68(2019), 134-140.
  29. P. W. Koh, L. Yuliati, S. L. Lee, Kinetics and optimization studies of photocatalytic degradation of methylene blue over Cr-doped TiO2 using response surface methodology, Iran. J. Sci. Technol. Trans. A Sci., 43(2019), 95-103.
  30. H. Eskandarloo, A. Badiei, M. A. Behnajady, Application of response surface methodology for optimization of operational variables in photodegradation of phenazopyridine drug using TiO2/CeO2 hybrid nanoparticles, Desalin. Water Treat., 54(2015), 3300-3310.
  31. S. Nur, S. Jefri, A. Halim, E. Noryana, Asian journal of green chemistry orginal research article response surface methodology : photodegradation of methyl orange by CuO/ZnO under UV light irradiation, Asian J. Green Chem., 3(2019), 271-287.
  32. A. H. Abdullah, H. J. M. Moey, N. A. Yusof, Response surface methodology analysis of the photocatalytic removal of Methylene Blue using bismuth vanadate prepared via polyol route, J. Environ. Sci. (China), 24(2012), 1694-1701.
  33. S. Baghbani Ghatar, S. Allahyari, N. Rahemi, M. Tasbihi, Response surface methodology optimization for photodegradation of methylene blue in a ZnO coated flat plate continuous photoreactor, Int. J. Chem. React. Eng., 16(2018), 1-14.
  34. I. H. Cho, K. D. Zoh, Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dye. Pigment., 75(2007), 533-543.
  35. A. Mehrizad, P. Gharbani, Removal of methylene blue from aqueous solution using nano-TiO2/UV Process: optimization by response surface methodology, Prog. Color Colorants Coat, 9(2016), 135-143.
  36. T. K. M. Prashantha Kumar, T. R. Mandlimath, P. Sangeetha, P. Sakthivel, S. K. Revathi, S. K. Ashok Kumar, S. K. Sahoo, Highly efficient performance of activated carbon impregnated with Ag, ZnO and Ag/ZnO nanoparticles as antimicrobial materials, RSC Adv., 5(2015), 108034-108043.
  37. P. Calza, V. A. Sakkas, C. Medana, C. Baiocchi, A. Dimou, E. Pelizzetti, T. Albanis, Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions, Appl. Catal. B Environ., 67(2006), 197-205.
  38. M. Haji Alhaji, K. Sanaullah, S. Fong Lim, A. Ragai Henry Rigit, A. Hamza, A. Khan, Modeling and optimization of photocatalytic treatment of pre-treated palm oil mill effluent (POME) in a UV/TiO2 system using response surface methodology (RSM), Cogent Eng., 4(2017), 1-17.
  39. H. Y. Shu, M. C. Chang, Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process, J. Hazard. Mater., 125(2005), 96-101.
  40. O. Ounas, B. Lekhlif, J. Jamal-eddine, The facile immobilization of ZnO into a polymer surface for photodegradation of organic contaminants, Mater. Today Proc., 23(2020).
  41. S. Sugumaran, C. S. Bellan, Transparent nano composite PVA-TiO2 and PMMA-TiO2 thin films: Optical and dielectric properties, Optik (Stuttg)., 125(2014), 5128-5133.
  42. P. Srinivasu, S. P. Singh, A. Islam, L. Han, Novel approach for the synthesis of nanocrystalline anatase titania and their photovoltaic application, Adv. Optoelectron., 2011(2011), 47-59.
  43. A. Di Mauro, M. Cantarella, G. Nicotra, G. Pellegrino, A. Gulino, M. V. Brundo, V. Privitera, G. Impellizzeri, Novel synthesis of ZnO / PMMA nanocomposites for photocatalytic applications, Nat. Publ. Gr., 33(2017), 1-12.
  44. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys., 8(2014), 123-134.
  45. S. Hammani, A. Barhoum, M. Bechelany, Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties, J. Mater. Sci., 53(2018), 1911-1921.
  46. Z. Adlan, M. Hir, P. Moradihamedani, A. H. Abdullah, M. A. Mohamed, Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye, Mater. Sci. Semicond. Process., 57(2017), 157-165.
  47. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9(2012), 671-675.
  48. D. Jassby, J. Farner Budarz, M. Wiesner, Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles, Environ. Sci. Technol., 46(2012), 6934-6941.
  49. Madhvi, L. Singh, S. Saroj, Y. Lee, S. V. Singh, Facile synthesis of nano-crystalline anatase TiO2 and their applications in degradation of Direct blue 199, J. Mater. Sci. Mater. Electron., 27(2016), 2581-2588.
  50. S. Saroj, L. Singh, R. Ranjan, S. V. Singh, Enhancement of photocatalytic activity and regeneration of Fe-doped TiO2 (Ti1−xFexO2) nanocrystalline particles synthesized using inexpensive TiO2 precursor, Res. Chem. Intermed., 45(2019), 1883-1906.
  51. S. Saroj, L. Singh, S. V. Singh, Photodegradation of Direct Blue-199 in carpet industry wastewater using iron-doped TiO2 nanoparticles and regenerated photocatalyst, Int. J. Chem. Kinet., 51(2019), 189-205.
  52. H. Y. Shu, Degradation of dyehouse effluent containing C.I. Direct Blue 199 by processes of ozonation, UV/H2O2 and in sequence of ozonation with UV/H2O2, J. Hazard. Mater., 133(2006), 92-98.
  53. O. Prieto, J. Fermoso, Y. Nuñez, J. L. Del Valle, R. Irusta, Decolouration of textile dyes in wastewaters by photocatalysis with TiO2, in Solar Energy, 79(2005), 376-383.
  54. S. Z. Zhang, X. G. Luo, X. Y. Lin, Thermocatalytic degradation of methylene blue using negative temperature coefficient resistor, Adv. Mater. Res., 726–731(2013), 2036-2039.
  55. Y. Chaouqi, R. Ouchn, I. Touarssi, I. Mourtah, M. El Bouchti, L. Lebrun, O. Cherkaoui, M. Hlaibi, Polymer inclusion membranes for selective extraction and recovery of hexavalent chromium ions from mixtures containing industrial blue P3R dye, Ind. Eng. Chem. Res., 58(2019), 18798-18809.
  56. O. Benhabiles, F. Galiano, T. Marino, H. Mahmoudi, H. Lounici, A. Figoli, Preparation and characterization of TiO2 -PVDF/PMMA blend membranes using an alternative non-toxic solvent for UF/MF and photocatalytic application, Molecules, 24(2019), 1-20